Mostrar el registro sencillo del ítem
dc.contributor.author
Antezana, Jorge Abel

dc.contributor.author
Ghiglioni, Eduardo Mario

dc.contributor.author
Lim, Yongdo
dc.contributor.author
Pálfia, Miklós
dc.date.available
2025-05-05T13:11:33Z
dc.date.issued
2024-11
dc.identifier.citation
Antezana, Jorge Abel; Ghiglioni, Eduardo Mario; Lim, Yongdo; Pálfia, Miklós; Ergodic theorems for the L^1-Karcher mean; Springer; Acta Scientiarum Mathematicarum (Szeged); 90; 3-4; 11-2024; 575-591
dc.identifier.issn
0001-6969
dc.identifier.uri
http://hdl.handle.net/11336/260290
dc.description.abstract
Recently the Karcher mean has been extended to the case of probability measures of positive operators on infinite-dimensional Hilbert spaces as the unique solution of a nonlinear operator equation on the convex Banach-Finsler manifold of positive operators. Let (Ω, μ) be a probability space, and let τ : Ω → Ω be a totally ergodic map. The main result of this paper is a new ergodic theorem for functions F in L^1(Ω, P), where P is the open cone of the strictly positive operators acting on a (separable) Hilbert space. In our result, we use inductive means to average the elements of the orbit, and we prove that almost surely these averages converge to the Karcher mean of the push-forward measure F_*(μ). From our result, we recover the strong law of large numbers and the “no dice” results proved by the third and fourth authors in the article Strong law of large numbers for the L^1-Karcher mean, Journal of Func. Anal. 279 (2020). From our main result, we also deduce an ergodic theorem for Markov chains with state space included in P.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
KARCHER MEAN
dc.subject
INDUCTIVE MEANS
dc.subject
ERGODIC THEOREM
dc.subject
LAW OF LARGE NUMBERS
dc.subject.classification
Matemática Pura

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Ergodic theorems for the L^1-Karcher mean
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-23T12:06:03Z
dc.journal.volume
90
dc.journal.number
3-4
dc.journal.pagination
575-591
dc.journal.pais
Hungría

dc.journal.ciudad
Szeged
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Autónoma de Madrid; España
dc.description.fil
Fil: Ghiglioni, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
dc.description.fil
Fil: Lim, Yongdo. Sungkyunkwan University; Corea del Sur
dc.description.fil
Fil: Pálfia, Miklós. Corvinus University Of Budapest; Hungría
dc.journal.title
Acta Scientiarum Mathematicarum (Szeged)

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s44146-024-00154-6
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s44146-024-00154-6
Archivos asociados