Mostrar el registro sencillo del ítem

dc.contributor.author
Antezana, Jorge Abel  
dc.contributor.author
Ghiglioni, Eduardo Mario  
dc.contributor.author
Lim, Yongdo  
dc.contributor.author
Pálfia, Miklós  
dc.date.available
2025-05-05T13:11:33Z  
dc.date.issued
2024-11  
dc.identifier.citation
Antezana, Jorge Abel; Ghiglioni, Eduardo Mario; Lim, Yongdo; Pálfia, Miklós; Ergodic theorems for the L^1-Karcher mean; Springer; Acta Scientiarum Mathematicarum (Szeged); 90; 3-4; 11-2024; 575-591  
dc.identifier.issn
0001-6969  
dc.identifier.uri
http://hdl.handle.net/11336/260290  
dc.description.abstract
Recently the Karcher mean has been extended to the case of probability measures of positive operators on infinite-dimensional Hilbert spaces as the unique solution of a nonlinear operator equation on the convex Banach-Finsler manifold of positive operators. Let (Ω, μ) be a probability space, and let τ : Ω → Ω be a totally ergodic map. The main result of this paper is a new ergodic theorem for functions F in L^1(Ω, P), where P is the open cone of the strictly positive operators acting on a (separable) Hilbert space. In our result, we use inductive means to average the elements of the orbit, and we prove that almost surely these averages converge to the Karcher mean of the push-forward measure F_*(μ). From our result, we recover the strong law of large numbers and the “no dice” results proved by the third and fourth authors in the article Strong law of large numbers for the L^1-Karcher mean, Journal of Func. Anal. 279 (2020). From our main result, we also deduce an ergodic theorem for Markov chains with state space included in P.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
KARCHER MEAN  
dc.subject
INDUCTIVE MEANS  
dc.subject
ERGODIC THEOREM  
dc.subject
LAW OF LARGE NUMBERS  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Ergodic theorems for the L^1-Karcher mean  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-23T12:06:03Z  
dc.journal.volume
90  
dc.journal.number
3-4  
dc.journal.pagination
575-591  
dc.journal.pais
Hungría  
dc.journal.ciudad
Szeged  
dc.description.fil
Fil: Antezana, Jorge Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Autónoma de Madrid; España  
dc.description.fil
Fil: Ghiglioni, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Lim, Yongdo. Sungkyunkwan University; Corea del Sur  
dc.description.fil
Fil: Pálfia, Miklós. Corvinus University Of Budapest; Hungría  
dc.journal.title
Acta Scientiarum Mathematicarum (Szeged)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s44146-024-00154-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s44146-024-00154-6