Artículo
Ergodic theorems for the L^1-Karcher mean
Fecha de publicación:
11/2024
Editorial:
Springer
Revista:
Acta Scientiarum Mathematicarum (Szeged)
ISSN:
0001-6969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Recently the Karcher mean has been extended to the case of probability measures of positive operators on infinite-dimensional Hilbert spaces as the unique solution of a nonlinear operator equation on the convex Banach-Finsler manifold of positive operators. Let (Ω, μ) be a probability space, and let τ : Ω → Ω be a totally ergodic map. The main result of this paper is a new ergodic theorem for functions F in L^1(Ω, P), where P is the open cone of the strictly positive operators acting on a (separable) Hilbert space. In our result, we use inductive means to average the elements of the orbit, and we prove that almost surely these averages converge to the Karcher mean of the push-forward measure F_*(μ). From our result, we recover the strong law of large numbers and the “no dice” results proved by the third and fourth authors in the article Strong law of large numbers for the L^1-Karcher mean, Journal of Func. Anal. 279 (2020). From our main result, we also deduce an ergodic theorem for Markov chains with state space included in P.
Palabras clave:
KARCHER MEAN
,
INDUCTIVE MEANS
,
ERGODIC THEOREM
,
LAW OF LARGE NUMBERS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Antezana, Jorge Abel; Ghiglioni, Eduardo Mario; Lim, Yongdo; Pálfia, Miklós; Ergodic theorems for the L^1-Karcher mean; Springer; Acta Scientiarum Mathematicarum (Szeged); 90; 3-4; 11-2024; 575-591
Compartir
Altmétricas