Mostrar el registro sencillo del ítem

dc.contributor.author
del Buey de Andrés, Celia  
dc.contributor.author
Sulca, Diego Armando  
dc.contributor.author
Villamayor, Orlando E.  
dc.date.available
2025-05-05T11:52:50Z  
dc.date.issued
2024-12  
dc.identifier.citation
del Buey de Andrés, Celia; Sulca, Diego Armando; Villamayor, Orlando E.; Differentiably simple rings and ring extensions defined by p-basis; Elsevier Science; Journal Of Pure And Applied Algebra; 228; 12; 12-2024; 1-19  
dc.identifier.issn
0022-4049  
dc.identifier.uri
http://hdl.handle.net/11336/260272  
dc.description.abstract
We review the concept of differentiably simple ring and we give a new proof of Harper’s Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit p-basis. These extensions are called Galois extensions of exponent one. For such an extension A ⊂ C, we introduce an A-scheme, called the Yuan scheme, which parametrizes subextensions A ⊂ B ⊂ C such that B ⊂ C is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
DIFFERENTIABLY SIMPLE RINGS  
dc.subject
GALOIS EXTENSIONS OF EXPONENT ONE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Differentiably simple rings and ring extensions defined by p-basis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-05T09:56:08Z  
dc.journal.volume
228  
dc.journal.number
12  
dc.journal.pagination
1-19  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: del Buey de Andrés, Celia. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España  
dc.description.fil
Fil: Sulca, Diego Armando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.description.fil
Fil: Villamayor, Orlando E.. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España  
dc.journal.title
Journal Of Pure And Applied Algebra  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0022404924001324  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jpaa.2024.107735