Artículo
Differentiably simple rings and ring extensions defined by p-basis
Fecha de publicación:
12/2024
Editorial:
Elsevier Science
Revista:
Journal Of Pure And Applied Algebra
ISSN:
0022-4049
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We review the concept of differentiably simple ring and we give a new proof of Harper’s Theorem on the characterization of Noetherian differentiably simple rings in positive characteristic. We then study flat families of differentiably simple rings, or equivalently, finite flat extensions of rings which locally admit p-basis. These extensions are called Galois extensions of exponent one. For such an extension A ⊂ C, we introduce an A-scheme, called the Yuan scheme, which parametrizes subextensions A ⊂ B ⊂ C such that B ⊂ C is Galois of a fixed rank. So, roughly, the Yuan scheme can be thought of as a kind of Grassmannian of Galois subextensions. We finally prove that the Yuan scheme is smooth and compute the dimension of the fibers.
Palabras clave:
DIFFERENTIABLY SIMPLE RINGS
,
GALOIS EXTENSIONS OF EXPONENT ONE
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
del Buey de Andrés, Celia; Sulca, Diego Armando; Villamayor, Orlando E.; Differentiably simple rings and ring extensions defined by p-basis; Elsevier Science; Journal Of Pure And Applied Algebra; 228; 12; 12-2024; 1-19
Compartir
Altmétricas