Mostrar el registro sencillo del ítem

dc.contributor.author
Paez Lama, Sebastián Antonio  
dc.contributor.author
Catania, Carlos Adrian  
dc.contributor.author
Ribeiro, Luana P.  
dc.contributor.author
Puchala, Ryszard  
dc.contributor.author
Gipson, Terry A.  
dc.contributor.author
Goetsch, Arthur L.  
dc.date.available
2025-04-30T11:00:47Z  
dc.date.issued
2024-04  
dc.identifier.citation
Paez Lama, Sebastián Antonio; Catania, Carlos Adrian; Ribeiro, Luana P.; Puchala, Ryszard; Gipson, Terry A.; et al.; Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats; Elsevier Science; Journal of Small Ruminant Research; 233; 4-2024; 1-13  
dc.identifier.issn
0921-4488  
dc.identifier.uri
http://hdl.handle.net/11336/260046  
dc.description.abstract
Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
machine learning  
dc.subject
boosting  
dc.subject
explainability  
dc.subject
SHAP  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-29T10:25:06Z  
dc.journal.volume
233  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Paez Lama, Sebastián Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina  
dc.description.fil
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina  
dc.description.fil
Fil: Ribeiro, Luana P.. No especifíca;  
dc.description.fil
Fil: Puchala, Ryszard. No especifíca;  
dc.description.fil
Fil: Gipson, Terry A.. No especifíca;  
dc.description.fil
Fil: Goetsch, Arthur L.. No especifíca;  
dc.journal.title
Journal of Small Ruminant Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0921448824000300  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.smallrumres.2024.107224