Mostrar el registro sencillo del ítem
dc.contributor.author
Paez Lama, Sebastián Antonio
dc.contributor.author
Catania, Carlos Adrian
dc.contributor.author
Ribeiro, Luana P.
dc.contributor.author
Puchala, Ryszard
dc.contributor.author
Gipson, Terry A.
dc.contributor.author
Goetsch, Arthur L.
dc.date.available
2025-04-30T11:00:47Z
dc.date.issued
2024-04
dc.identifier.citation
Paez Lama, Sebastián Antonio; Catania, Carlos Adrian; Ribeiro, Luana P.; Puchala, Ryszard; Gipson, Terry A.; et al.; Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats; Elsevier Science; Journal of Small Ruminant Research; 233; 4-2024; 1-13
dc.identifier.issn
0921-4488
dc.identifier.uri
http://hdl.handle.net/11336/260046
dc.description.abstract
Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
machine learning
dc.subject
boosting
dc.subject
explainability
dc.subject
SHAP
dc.subject.classification
Otras Ciencias de la Computación e Información
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-29T10:25:06Z
dc.journal.volume
233
dc.journal.pagination
1-13
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Paez Lama, Sebastián Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas. Universidad Nacional de Cuyo. Instituto Argentino de Investigaciones de las Zonas Áridas; Argentina
dc.description.fil
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Ribeiro, Luana P.. No especifíca;
dc.description.fil
Fil: Puchala, Ryszard. No especifíca;
dc.description.fil
Fil: Gipson, Terry A.. No especifíca;
dc.description.fil
Fil: Goetsch, Arthur L.. No especifíca;
dc.journal.title
Journal of Small Ruminant Research
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0921448824000300
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.smallrumres.2024.107224
Archivos asociados