Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats

Paez Lama, Sebastián AntonioIcon ; Catania, Carlos AdrianIcon ; Ribeiro, Luana P.; Puchala, Ryszard; Gipson, Terry A.; Goetsch, Arthur L.
Fecha de publicación: 04/2024
Editorial: Elsevier Science
Revista: Journal of Small Ruminant Research
ISSN: 0921-4488
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias de la Computación e Información

Resumen

Recent advancements in machine learning for detecting animal behaviors, particularly goat activities, have faced challenges due to their complexity and lack of explainability in practical applications. This article presents an interpretable machine-learning framework using sensor-based data to differentiate mimosa grazing from other goat activities like grazing herb, resting and walking. BORUTA, an algorithm for selecting the most relevant features, and SHAP, a technique for interpreting the decision of a machine learning model are two fundamental components of the methodology used for developing the model. The resulting model, a gradient boost algorithm with 15 selected features has shown robust performance with accuracy, sensitivity, and precision between 82% and 86%. SHAP analysis further elucidates the model’s decision-making, highlighting the impact of features like ’Standing’ and ’%HeadDown,’ along with distance-related features on discriminating grazing mimosa from grazing herb. The simplicity of the model advocates for its potential in real-time systems and underscores the importance of explainability in improving and deploying these models in real-world scenarios.
Palabras clave: machine learning , boosting , explainability , SHAP
Ver el registro completo
 
Archivos asociados
Tamaño: 3.135Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/260046
URL: https://linkinghub.elsevier.com/retrieve/pii/S0921448824000300
DOI: http://dx.doi.org/10.1016/j.smallrumres.2024.107224
Colecciones
Articulos(CCT - MENDOZA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MENDOZA
Citación
Paez Lama, Sebastián Antonio; Catania, Carlos Adrian; Ribeiro, Luana P.; Puchala, Ryszard; Gipson, Terry A.; et al.; Developing an interpretable machine learning model for the detection of mimosa (Albizia julibrissin Durazz) grazing in goats; Elsevier Science; Journal of Small Ruminant Research; 233; 4-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES