Mostrar el registro sencillo del ítem

dc.contributor.author
Sanabria, Pablo  
dc.contributor.author
Montoya, Sebastián  
dc.contributor.author
Neyem, Andrés  
dc.contributor.author
Toro Icarte, Rodrigo  
dc.contributor.author
Hirsch Jofré, Matías Eberardo  
dc.contributor.author
Mateos Diaz, Cristian Maximiliano  
dc.date.available
2025-04-29T14:04:55Z  
dc.date.issued
2024-04  
dc.identifier.citation
Sanabria, Pablo; Montoya, Sebastián; Neyem, Andrés; Toro Icarte, Rodrigo; Hirsch Jofré, Matías Eberardo; et al.; Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments; MDPI; Applied Sciences; 14; 8; 4-2024; 1-22  
dc.identifier.issn
2076-3417  
dc.identifier.uri
http://hdl.handle.net/11336/259992  
dc.description.abstract
Due to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the “reliability” concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes’ mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms’ throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment’s performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network’s diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
DEW COMPUTING  
dc.subject
REINFORCEMENT LEARNING  
dc.subject
CONNECTION-AWARE SCHEDULING  
dc.subject
MOBILITY MODELS  
dc.subject
HEURISTICS  
dc.subject
TRANSFER LEARNING  
dc.subject
SIMULATION  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-29T10:38:55Z  
dc.journal.volume
14  
dc.journal.number
8  
dc.journal.pagination
1-22  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basel  
dc.description.fil
Fil: Sanabria, Pablo. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Montoya, Sebastián. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Neyem, Andrés. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Toro Icarte, Rodrigo. Pontificia Universidad Católica de Chile; Chile  
dc.description.fil
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina  
dc.journal.title
Applied Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/8/3206  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/app14083206