Mostrar el registro sencillo del ítem
dc.contributor.author
Sanabria, Pablo
dc.contributor.author
Montoya, Sebastián
dc.contributor.author
Neyem, Andrés
dc.contributor.author
Toro Icarte, Rodrigo
dc.contributor.author
Hirsch Jofré, Matías Eberardo
dc.contributor.author
Mateos Diaz, Cristian Maximiliano
dc.date.available
2025-04-29T14:04:55Z
dc.date.issued
2024-04
dc.identifier.citation
Sanabria, Pablo; Montoya, Sebastián; Neyem, Andrés; Toro Icarte, Rodrigo; Hirsch Jofré, Matías Eberardo; et al.; Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments; MDPI; Applied Sciences; 14; 8; 4-2024; 1-22
dc.identifier.issn
2076-3417
dc.identifier.uri
http://hdl.handle.net/11336/259992
dc.description.abstract
Due to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the “reliability” concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes’ mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms’ throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment’s performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network’s diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
MDPI
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
DEW COMPUTING
dc.subject
REINFORCEMENT LEARNING
dc.subject
CONNECTION-AWARE SCHEDULING
dc.subject
MOBILITY MODELS
dc.subject
HEURISTICS
dc.subject
TRANSFER LEARNING
dc.subject
SIMULATION
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-29T10:38:55Z
dc.journal.volume
14
dc.journal.number
8
dc.journal.pagination
1-22
dc.journal.pais
Suiza
dc.journal.ciudad
Basel
dc.description.fil
Fil: Sanabria, Pablo. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Montoya, Sebastián. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Neyem, Andrés. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Toro Icarte, Rodrigo. Pontificia Universidad Católica de Chile; Chile
dc.description.fil
Fil: Hirsch Jofré, Matías Eberardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.description.fil
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
dc.journal.title
Applied Sciences
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2076-3417/14/8/3206
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/app14083206
Archivos asociados