Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments

Sanabria, Pablo; Montoya, Sebastián; Neyem, Andrés; Toro Icarte, Rodrigo; Hirsch Jofré, Matías EberardoIcon ; Mateos Diaz, Cristian MaximilianoIcon
Fecha de publicación: 04/2024
Editorial: MDPI
Revista: Applied Sciences
ISSN: 2076-3417
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Due to the widespread use of mobile and IoT devices, coupled with their continually expanding processing capabilities, dew computing environments have become a significant focus for researchers. These environments enable resource-constrained devices to contribute computing power to a local network. One major challenge within these environments revolves around task scheduling, specifically determining the optimal distribution of jobs across the available devices in the network. This challenge becomes particularly pronounced in dynamic environments where network conditions constantly change. This work proposes integrating the “reliability” concept into cutting-edge human-design job distribution heuristics named ReleSEAS and RelBPA as a means of adapting to dynamic and ever-changing network conditions caused by nodes’ mobility. Additionally, we introduce a reinforcement learning (RL) approach, embedding both the notion of reliability and real-time network status into the RL agent. Our research rigorously contrasts our proposed algorithms’ throughput and job completion rates with their predecessors. Simulated results reveal a marked improvement in overall throughput, with our algorithms potentially boosting the environment’s performance. They also show a significant enhancement in job completion within dynamic environments compared to baseline findings. Moreover, when RL is applied, it surpasses the job completion rate of human-designed heuristics. Our study emphasizes the advantages of embedding inherent network characteristics into job distribution algorithms for dew computing. Such incorporation gives them a profound understanding of the network’s diverse resources. Consequently, this insight enables the algorithms to manage resources more adeptly and effectively.
Palabras clave: DEW COMPUTING , REINFORCEMENT LEARNING , CONNECTION-AWARE SCHEDULING , MOBILITY MODELS , HEURISTICS , TRANSFER LEARNING , SIMULATION
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 992.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259992
URL: https://www.mdpi.com/2076-3417/14/8/3206
DOI: http://dx.doi.org/10.3390/app14083206
Colecciones
Articulos(ISISTAN)
Articulos de INSTITUTO SUPERIOR DE INGENIERIA DEL SOFTWARE
Citación
Sanabria, Pablo; Montoya, Sebastián; Neyem, Andrés; Toro Icarte, Rodrigo; Hirsch Jofré, Matías Eberardo; et al.; Connection-Aware Heuristics for Scheduling and Distributing Jobs under Dynamic Dew Computing Environments; MDPI; Applied Sciences; 14; 8; 4-2024; 1-22
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES