Mostrar el registro sencillo del ítem

dc.contributor.author
Bel, Andrea Liliana  
dc.contributor.author
Rotstein, Horacio  
dc.contributor.author
Reartes, Walter A.  
dc.date.available
2025-04-21T12:37:21Z  
dc.date.issued
2021  
dc.identifier.citation
Entrainment of competitive threshold-linear networks; 29th Annual Computacional Neuroscience Meeting; Online; Estados Unidos; 2020; 95-95  
dc.identifier.issn
1471-2202  
dc.identifier.uri
http://hdl.handle.net/11336/259020  
dc.description.abstract
Neuronal oscillations are ubiquitous in the brain and emerge from the combined activity of the participating neurons (or nodes), the connec- tivity and the network topology. Recent neurotechnological advances have made it possible to interrogate neuronal circuits by perturbing one or more of its nodes. The response to periodic inputs has been used as a tool to identify the oscillatory properties of circuits and the flow of information in networks. However, a general theory that explains the underlying mechanisms and allows to make predictions is lacking beyond the single neuron level. Threshold-linear network (TLN) models describe the activity of con- nected nodes where the contribution of the connectivity terms is lin- ear above some threshold value (typically zero), while the network is disconnected below it. In their simplest description, the dynamics of the individual nodes are one-dimensional and linear. When the nodes in the network are neurons or neuronal populations, their activity can be interpreted as the firing rate, and therefore the TLNs represent fir- ing rate models [1]. Competitive threshold-linear networks (CTLNs) are a class of TLNs where the connectivity weights are all negative and there are no self- connections [2,3]. Inhibitory networks arise in many neuronal systems and have been shown to underlie the generation of rhythmic activity in cognition and motor behavior [4,5]. Despite their simplicity, TLNs and CTLNs produce complex behavior including multistability, peri- odic, quasi-periodic and chaotic solutions [2,3,6]. In this work, we consider CTLNs with three or more nodes and cyclic symmetry in which oscillatory solutions are observed. We first assume that an external oscillatory input is added to one of the nodes and, by defining a Poincaré map, we numerically study the response proper- ties of the CTLN networks. We determine the ranges of input ampli- tude and frequency in which the CTLN is able to follow the input (1:1 entrainment). For this we define local and global entrainment measures that convey different information. We then study how the entrainment properties of the CTLNs is affected by changes in (i) the time scale of each node, (ii) the number of nodes in the network, and (iii) the strength of the inhibitory connections. Finally, we extend our results to include other entrainment scenarios (e.g., 2:1) and other net- work topologies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
BioMed Central  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
THRESHOLD-LINEAR NETWORKS  
dc.subject
PERIODIC SOLUTIONS  
dc.subject
ENTRAINMENT  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Entrainment of competitive threshold-linear networks  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2023-04-25T10:25:18Z  
dc.journal.volume
21  
dc.journal.number
Suplemento 1  
dc.journal.pagination
95-95  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
London  
dc.description.fil
Fil: Bel, Andrea Liliana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Unidad de Direccion; Argentina  
dc.description.fil
Fil: Rotstein, Horacio. New Jersey Institute of Technology; Estados Unidos. Rutgers University; Estados Unidos  
dc.description.fil
Fil: Reartes, Walter A.. Universidad Nacional del Sur. Departamento de Matemática; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/supplements/volume-21-supplement-1  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12868-020-00593-1  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
29th Annual Computacional Neuroscience Meeting  
dc.date.evento
2020-07-18  
dc.description.ciudadEvento
Online  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Organization for Computational Neurosciences  
dc.source.revista
Bmc Neuroscience  
dc.date.eventoHasta
2020-07-22  
dc.type
Congreso