Mostrar el registro sencillo del ítem
dc.contributor.author
Bel, Andrea Liliana

dc.contributor.author
Rotstein, Horacio
dc.contributor.author
Reartes, Walter A.
dc.date.available
2025-04-21T12:37:21Z
dc.date.issued
2021
dc.identifier.citation
Entrainment of competitive threshold-linear networks; 29th Annual Computacional Neuroscience Meeting; Online; Estados Unidos; 2020; 95-95
dc.identifier.issn
1471-2202
dc.identifier.uri
http://hdl.handle.net/11336/259020
dc.description.abstract
Neuronal oscillations are ubiquitous in the brain and emerge from the combined activity of the participating neurons (or nodes), the connec- tivity and the network topology. Recent neurotechnological advances have made it possible to interrogate neuronal circuits by perturbing one or more of its nodes. The response to periodic inputs has been used as a tool to identify the oscillatory properties of circuits and the flow of information in networks. However, a general theory that explains the underlying mechanisms and allows to make predictions is lacking beyond the single neuron level. Threshold-linear network (TLN) models describe the activity of con- nected nodes where the contribution of the connectivity terms is lin- ear above some threshold value (typically zero), while the network is disconnected below it. In their simplest description, the dynamics of the individual nodes are one-dimensional and linear. When the nodes in the network are neurons or neuronal populations, their activity can be interpreted as the firing rate, and therefore the TLNs represent fir- ing rate models [1]. Competitive threshold-linear networks (CTLNs) are a class of TLNs where the connectivity weights are all negative and there are no self- connections [2,3]. Inhibitory networks arise in many neuronal systems and have been shown to underlie the generation of rhythmic activity in cognition and motor behavior [4,5]. Despite their simplicity, TLNs and CTLNs produce complex behavior including multistability, peri- odic, quasi-periodic and chaotic solutions [2,3,6]. In this work, we consider CTLNs with three or more nodes and cyclic symmetry in which oscillatory solutions are observed. We first assume that an external oscillatory input is added to one of the nodes and, by defining a Poincaré map, we numerically study the response proper- ties of the CTLN networks. We determine the ranges of input ampli- tude and frequency in which the CTLN is able to follow the input (1:1 entrainment). For this we define local and global entrainment measures that convey different information. We then study how the entrainment properties of the CTLNs is affected by changes in (i) the time scale of each node, (ii) the number of nodes in the network, and (iii) the strength of the inhibitory connections. Finally, we extend our results to include other entrainment scenarios (e.g., 2:1) and other net- work topologies.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
BioMed Central

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
THRESHOLD-LINEAR NETWORKS
dc.subject
PERIODIC SOLUTIONS
dc.subject
ENTRAINMENT
dc.subject.classification
Matemática Aplicada

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Entrainment of competitive threshold-linear networks
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-04-25T10:25:18Z
dc.journal.volume
21
dc.journal.number
Suplemento 1
dc.journal.pagination
95-95
dc.journal.pais
Reino Unido

dc.journal.ciudad
London
dc.description.fil
Fil: Bel, Andrea Liliana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Unidad de Direccion; Argentina
dc.description.fil
Fil: Rotstein, Horacio. New Jersey Institute of Technology; Estados Unidos. Rutgers University; Estados Unidos
dc.description.fil
Fil: Reartes, Walter A.. Universidad Nacional del Sur. Departamento de Matemática; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://bmcneurosci.biomedcentral.com/articles/supplements/volume-21-supplement-1
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1186/s12868-020-00593-1
dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.conicet.rol
Autor

dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
29th Annual Computacional Neuroscience Meeting
dc.date.evento
2020-07-18
dc.description.ciudadEvento
Online
dc.description.paisEvento
Estados Unidos

dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Organization for Computational Neurosciences
dc.source.revista
Bmc Neuroscience

dc.date.eventoHasta
2020-07-22
dc.type
Congreso
Archivos asociados