Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Entrainment of competitive threshold-linear networks

Bel, Andrea LilianaIcon ; Rotstein, Horacio; Reartes, Walter A.
Tipo del evento: Congreso
Nombre del evento: 29th Annual Computacional Neuroscience Meeting
Fecha del evento: 18/07/2020
Institución Organizadora: Organization for Computational Neurosciences;
Título de la revista: Bmc Neuroscience
Editorial: BioMed Central
ISSN: 1471-2202
Idioma: Inglés
Clasificación temática:
Matemática Aplicada

Resumen

Neuronal oscillations are ubiquitous in the brain and emerge from the combined activity of the participating neurons (or nodes), the connec- tivity and the network topology. Recent neurotechnological advances have made it possible to interrogate neuronal circuits by perturbing one or more of its nodes. The response to periodic inputs has been used as a tool to identify the oscillatory properties of circuits and the flow of information in networks. However, a general theory that explains the underlying mechanisms and allows to make predictions is lacking beyond the single neuron level. Threshold-linear network (TLN) models describe the activity of con- nected nodes where the contribution of the connectivity terms is lin- ear above some threshold value (typically zero), while the network is disconnected below it. In their simplest description, the dynamics of the individual nodes are one-dimensional and linear. When the nodes in the network are neurons or neuronal populations, their activity can be interpreted as the firing rate, and therefore the TLNs represent fir- ing rate models [1]. Competitive threshold-linear networks (CTLNs) are a class of TLNs where the connectivity weights are all negative and there are no self- connections [2,3]. Inhibitory networks arise in many neuronal systems and have been shown to underlie the generation of rhythmic activity in cognition and motor behavior [4,5]. Despite their simplicity, TLNs and CTLNs produce complex behavior including multistability, peri- odic, quasi-periodic and chaotic solutions [2,3,6]. In this work, we consider CTLNs with three or more nodes and cyclic symmetry in which oscillatory solutions are observed. We first assume that an external oscillatory input is added to one of the nodes and, by defining a Poincaré map, we numerically study the response proper- ties of the CTLN networks. We determine the ranges of input ampli- tude and frequency in which the CTLN is able to follow the input (1:1 entrainment). For this we define local and global entrainment measures that convey different information. We then study how the entrainment properties of the CTLNs is affected by changes in (i) the time scale of each node, (ii) the number of nodes in the network, and (iii) the strength of the inhibitory connections. Finally, we extend our results to include other entrainment scenarios (e.g., 2:1) and other net- work topologies.
Palabras clave: THRESHOLD-LINEAR NETWORKS , PERIODIC SOLUTIONS , ENTRAINMENT
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 648.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259020
URL: https://bmcneurosci.biomedcentral.com/articles/supplements/volume-21-supplement-
DOI: http://dx.doi.org/10.1186/s12868-020-00593-1
Colecciones
Eventos(CCT - BAHIA BLANCA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Entrainment of competitive threshold-linear networks; 29th Annual Computacional Neuroscience Meeting; Online; Estados Unidos; 2020; 95-95
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES