Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Frequency filter interactions in network of non-oscillatory cells

Bel, Andrea LilianaIcon ; Rotstein, Horacio G.
Tipo del evento: Congreso
Nombre del evento: 30th Annual Computational Neuroscience Meeting
Fecha del evento: 03/07/2021
Institución Organizadora: Organization for Computational Neurosciences;
Título de la revista: Journal of Computational Neuroscience
Editorial: Spinger Nature
ISSN: 0929-5313
e-ISSN: 1573-6873
Idioma: Inglés
Clasificación temática:
Matemática Aplicada

Resumen

Resonance refers to the ability of dynamical systems to exhibit a peak in their amplitude response to oscillatory inputs at a preferred (resonant) frequency. In neuronal cir- cuits, resonance is typically measured by using the imped- ance amplitude profile Z defined as the absolute value of the quotient of the Fourier transforms of the output and the input. Resonance has been investigated in single neurons by many authors both experimentally and theoretically (Cichon & Gan, 2015 Apr; Sajikumar et al., 2014 Aug 19). Network resonance has received much less attention. Two important questions are (i) whether and under what condi- tions a network of neurons exhibits resonance in one or more neurons in response to inputs to one or more neurons, and (ii) whether and under what conditions the information is communicated between neurons in a frequency-dependent manner. In this project we address these issues by using a minimal network consisting of two passive cells (linear, non-reso- nant neurons) recurrently connected via graded synaptic inhibition or excitation and receiving oscillatory inputs in either one or the two nodes (Sezener et al., 2021). In order to investigate how network resonance emerges we extend the concept of impedance to nonlinear systems by comput- ing the peak-to-trough amplitudes normalized by the input amplitude. In order to investigate the communication of frequency-dependent information across neurons in the network we borrow the concept of the coupling coefficient from the gap junction literature. The coupling coefficient K, defined as the quotient between the postsynaptic and pre- synaptic membrane potentials of two electrically coupled neurons, is used to measure the strength of the connection in the presence of constant (DC) inputs. Here we extend this metrics to synaptically connected neurons and to the fre- quency domain. Linear networks (linear neurons and linear connectivity) can only show a low-pass filter K profile (K as a function of the input frequency). We show that the pres- ence of the more realistic nonlinear synaptic connectivity can produce band-pass K profiles. We note that the concept of communication of information we use here is different than the standard one used in information theory.
Palabras clave: NEURONAL NETWORKS , RESONANCE , OSCILLATORY INPUT
Ver el registro completo
 
Archivos asociados
Tamaño: 803.4Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/259014
URL: https://link.springer.com/article/10.1007/s10827-021-00801-9
DOI: http://dx.doi.org/10.1007/s10827-021-00801-9
Colecciones
Eventos(CCT - BAHIA BLANCA)
Eventos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Frequency filter interactions in network of non-oscillatory cells; 30th Annual Computational Neuroscience Meeting; Michigan; Estados Unidos; 2021; 157-157
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES