Mostrar el registro sencillo del ítem
dc.contributor.author
Bel, Andrea Liliana
dc.contributor.author
Rotstein, Horacio G.
dc.date.available
2025-04-21T11:47:47Z
dc.date.issued
2021
dc.identifier.citation
Frequency filter interactions in network of non-oscillatory cells; 30th Annual Computational Neuroscience Meeting; Michigan; Estados Unidos; 2021; 157-157
dc.identifier.issn
0929-5313
dc.identifier.uri
http://hdl.handle.net/11336/259014
dc.description.abstract
Resonance refers to the ability of dynamical systems to exhibit a peak in their amplitude response to oscillatory inputs at a preferred (resonant) frequency. In neuronal cir- cuits, resonance is typically measured by using the imped- ance amplitude profile Z defined as the absolute value of the quotient of the Fourier transforms of the output and the input. Resonance has been investigated in single neurons by many authors both experimentally and theoretically (Cichon & Gan, 2015 Apr; Sajikumar et al., 2014 Aug 19). Network resonance has received much less attention. Two important questions are (i) whether and under what condi- tions a network of neurons exhibits resonance in one or more neurons in response to inputs to one or more neurons, and (ii) whether and under what conditions the information is communicated between neurons in a frequency-dependent manner. In this project we address these issues by using a minimal network consisting of two passive cells (linear, non-reso- nant neurons) recurrently connected via graded synaptic inhibition or excitation and receiving oscillatory inputs in either one or the two nodes (Sezener et al., 2021). In order to investigate how network resonance emerges we extend the concept of impedance to nonlinear systems by comput- ing the peak-to-trough amplitudes normalized by the input amplitude. In order to investigate the communication of frequency-dependent information across neurons in the network we borrow the concept of the coupling coefficient from the gap junction literature. The coupling coefficient K, defined as the quotient between the postsynaptic and pre- synaptic membrane potentials of two electrically coupled neurons, is used to measure the strength of the connection in the presence of constant (DC) inputs. Here we extend this metrics to synaptically connected neurons and to the fre- quency domain. Linear networks (linear neurons and linear connectivity) can only show a low-pass filter K profile (K as a function of the input frequency). We show that the pres- ence of the more realistic nonlinear synaptic connectivity can produce band-pass K profiles. We note that the concept of communication of information we use here is different than the standard one used in information theory.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Spinger Nature
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
NEURONAL NETWORKS
dc.subject
RESONANCE
dc.subject
OSCILLATORY INPUT
dc.subject.classification
Matemática Aplicada
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Frequency filter interactions in network of non-oscillatory cells
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2023-04-25T10:20:18Z
dc.identifier.eissn
1573-6873
dc.journal.pagination
157-157
dc.journal.pais
Reino Unido
dc.journal.ciudad
London
dc.description.fil
Fil: Bel, Andrea Liliana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Unidad de Dirección. Comunicación Institucional; Argentina
dc.description.fil
Fil: Rotstein, Horacio G.. New Jersey Institute of Technology; Estados Unidos. Rutgers University; Estados Unidos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10827-021-00801-9
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10827-021-00801-9
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
30th Annual Computational Neuroscience Meeting
dc.date.evento
2021-07-03
dc.description.ciudadEvento
Michigan
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Organization for Computational Neurosciences
dc.source.revista
Journal of Computational Neuroscience
dc.date.eventoHasta
2021-07-07
dc.type
Congreso
Archivos asociados