Mostrar el registro sencillo del ítem

dc.contributor.author
Graesser, Jordan  
dc.contributor.author
Stanimirova, Radost  
dc.contributor.author
Tarrio, Katelyn  
dc.contributor.author
Copati, Esteban J.  
dc.contributor.author
Volante, José Norberto  
dc.contributor.author
Verón, Santiago Ramón  
dc.contributor.author
Banchero, Santiago  
dc.contributor.author
Elena, Hernan  
dc.contributor.author
de Abelleyra, Dieg  
dc.contributor.author
Friedl, Mark A.  
dc.date.available
2025-04-21T11:10:23Z  
dc.date.issued
2022-08  
dc.identifier.citation
Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; et al.; Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America; MDPI; Remote Sensing; 14; 16; 8-2022; 1-28  
dc.identifier.issn
2072-4292  
dc.identifier.uri
http://hdl.handle.net/11336/258998  
dc.description.abstract
The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
LANDSAT  
dc.subject
LANDCOVER  
dc.subject
TIME SERIES  
dc.subject
CONDITIONAL RANDOM FIELDS  
dc.subject.classification
Sensores Remotos  
dc.subject.classification
Ingeniería del Medio Ambiente  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-16T11:25:06Z  
dc.journal.volume
14  
dc.journal.number
16  
dc.journal.pagination
1-28  
dc.journal.pais
Suiza  
dc.journal.ciudad
Basilea  
dc.description.fil
Fil: Graesser, Jordan. Boston University; Estados Unidos  
dc.description.fil
Fil: Stanimirova, Radost. Boston University; Estados Unidos  
dc.description.fil
Fil: Tarrio, Katelyn. Boston University; Estados Unidos  
dc.description.fil
Fil: Copati, Esteban J.. No especifíca;  
dc.description.fil
Fil: Volante, José Norberto. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Verón, Santiago Ramón. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Banchero, Santiago. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina  
dc.description.fil
Fil: Elena, Hernan. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: de Abelleyra, Dieg. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Clima y Agua; Argentina  
dc.description.fil
Fil: Friedl, Mark A.. Boston University; Estados Unidos  
dc.journal.title
Remote Sensing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2072-4292/14/16/4005  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/rs14164005