Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America

Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; Verón, Santiago RamónIcon ; Banchero, Santiago; Elena, Hernan; de Abelleyra, Dieg; Friedl, Mark A.
Fecha de publicación: 08/2022
Editorial: MDPI
Revista: Remote Sensing
ISSN: 2072-4292
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Sensores Remotos

Resumen

The impact of land cover change across the planet continues to necessitate accurate methods to detect and monitor evolving processes from satellite imagery. In this context, regional and global land cover mapping over time has largely treated time as independent and addressed temporal map consistency as a post-classification endeavor. However, we argue that time can be better modeled as codependent during the model classification stage to produce more consistent land cover estimates over long time periods and gradual change events. To produce temporally-dependent land cover estimates—meaning land cover is predicted over time in connected sequences as opposed to predictions made for a given time period without consideration of past land cover—we use structured learning with conditional random fields (CRFs), coupled with a land cover augmentation method to produce time series training data and bi-weekly Landsat imagery over 20 years (1999–2018) across the Southern Cone region of South America. A CRF accounts for the natural dependencies of land change processes. As a result, it is able to produce land cover estimates over time that better reflect real change and stability by reducing pixel-level annual noise. Using CRF, we produced a twenty-year dataset of land cover over the region, depicting key change processes such as cropland expansion and tree cover loss at the Landsat scale. The augmentation and CRF approach introduced here provides a more temporally consistent land cover product over traditional mapping methods.
Palabras clave: LANDSAT , LANDCOVER , TIME SERIES , CONDITIONAL RANDOM FIELDS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 23.00Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258998
URL: https://www.mdpi.com/2072-4292/14/16/4005
DOI: http://dx.doi.org/10.3390/rs14164005
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Graesser, Jordan; Stanimirova, Radost; Tarrio, Katelyn; Copati, Esteban J.; Volante, José Norberto; et al.; Temporally-Consistent Annual Land Cover from Landsat Time Series in the Southern Cone of South America; MDPI; Remote Sensing; 14; 16; 8-2022; 1-28
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES