Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Martinez, Alejandra Mercedes  
dc.date.available
2025-04-16T09:17:52Z  
dc.date.issued
2024-10  
dc.identifier.citation
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; Robust variable selection for partially linear additive models; Springer; Statistics And Computing; 34; 6; 10-2024; 1-18  
dc.identifier.issn
0960-3174  
dc.identifier.uri
http://hdl.handle.net/11336/258881  
dc.description.abstract
Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametriccomponents as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse statistical models are easier to interpret than dense ones, since only a small number of the parameters are non--zero. This scenario is common in regression problems, making variable selection an important task. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The numerical results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Partially Linear Additive Models  
dc.subject
Penalties  
dc.subject
Robust Estimation  
dc.subject
Sparse Regression Models  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Robust variable selection for partially linear additive models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-14T10:32:10Z  
dc.journal.volume
34  
dc.journal.number
6  
dc.journal.pagination
1-18  
dc.journal.pais
Alemania  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina  
dc.description.fil
Fil: Martinez, Alejandra Mercedes. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Statistics And Computing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11222-024-10520-7  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11222-024-10520-7