Mostrar el registro sencillo del ítem
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Martinez, Alejandra Mercedes
dc.date.available
2025-04-16T09:17:52Z
dc.date.issued
2024-10
dc.identifier.citation
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; Robust variable selection for partially linear additive models; Springer; Statistics And Computing; 34; 6; 10-2024; 1-18
dc.identifier.issn
0960-3174
dc.identifier.uri
http://hdl.handle.net/11336/258881
dc.description.abstract
Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametriccomponents as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse statistical models are easier to interpret than dense ones, since only a small number of the parameters are non--zero. This scenario is common in regression problems, making variable selection an important task. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The numerical results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Partially Linear Additive Models
dc.subject
Penalties
dc.subject
Robust Estimation
dc.subject
Sparse Regression Models
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Robust variable selection for partially linear additive models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-14T10:32:10Z
dc.journal.volume
34
dc.journal.number
6
dc.journal.pagination
1-18
dc.journal.pais
Alemania
dc.description.fil
Fil: Boente Boente, Graciela Lina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.description.fil
Fil: Martinez, Alejandra Mercedes. Universidad Nacional de Luján. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Statistics And Computing
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11222-024-10520-7
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11222-024-10520-7
Archivos asociados