Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Robust variable selection for partially linear additive models

Boente Boente, Graciela LinaIcon ; Martinez, Alejandra MercedesIcon
Fecha de publicación: 10/2024
Editorial: Springer
Revista: Statistics And Computing
ISSN: 0960-3174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametriccomponents as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse statistical models are easier to interpret than dense ones, since only a small number of the parameters are non--zero. This scenario is common in regression problems, making variable selection an important task. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The numerical results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.
Palabras clave: Partially Linear Additive Models , Penalties , Robust Estimation , Sparse Regression Models
Ver el registro completo
 
Archivos asociados
Tamaño: 667.9Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258881
URL: https://link.springer.com/10.1007/s11222-024-10520-7
DOI: http://dx.doi.org/10.1007/s11222-024-10520-7
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Boente Boente, Graciela Lina; Martinez, Alejandra Mercedes; Robust variable selection for partially linear additive models; Springer; Statistics And Computing; 34; 6; 10-2024; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES