Mostrar el registro sencillo del ítem
dc.contributor.author
Chantada, Augusto Tomás

dc.contributor.author
Landau, Susana Judith

dc.contributor.author
Protopapas, Pavlos

dc.contributor.author
Scoccola, Claudia Graciela

dc.contributor.author
Garraffo, Cecilia

dc.date.available
2025-04-15T11:30:32Z
dc.date.issued
2024-06
dc.identifier.citation
Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Faster Bayesian inference with neural network bundles and new results for f ( R ) models; American Physical Society; Physical Review D; 109; 12; 6-2024; 1-14
dc.identifier.issn
2470-0010
dc.identifier.uri
http://hdl.handle.net/11336/258783
dc.description.abstract
In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Physical Society

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
cosmology
dc.subject
neural networks
dc.subject
bayesian inference
dc.subject.classification
Astronomía

dc.subject.classification
Ciencias Físicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Faster Bayesian inference with neural network bundles and new results for f ( R ) models
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-14T10:39:51Z
dc.identifier.eissn
2470-0029
dc.journal.volume
109
dc.journal.number
12
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Chantada, Augusto Tomás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
dc.description.fil
Fil: Landau, Susana Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
dc.description.fil
Fil: Protopapas, Pavlos. John A. Paulson School Of Engineering & Applied Sciences ; Harvard University;
dc.description.fil
Fil: Scoccola, Claudia Graciela. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.description.fil
Fil: Garraffo, Cecilia. Harvard-Smithsonian Center for Astrophysics; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Physical Review D
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevD.109.123514
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevD.109.123514
Archivos asociados