Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Faster Bayesian inference with neural network bundles and new results for f ( R ) models

Chantada, Augusto TomásIcon ; Landau, Susana JudithIcon ; Protopapas, Pavlos; Scoccola, Claudia GracielaIcon ; Garraffo, CeciliaIcon
Fecha de publicación: 06/2024
Editorial: American Physical Society
Revista: Physical Review D
ISSN: 2470-0010
e-ISSN: 2470-0029
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

In the last few years, there has been significant progress in the development of machine learning methods tailored to astrophysics and cosmology. We have recently applied one of these, namely, the neural network bundle method, to the cosmological scenario. Moreover, we showed that in some cases the computational times of the Bayesian inference process can be reduced. In this paper, we present an improvement to the neural network bundle method that results in a significant reduction of the computational times of the statistical analysis. The novel aspect consists of the use of the neural network bundle method to calculate the luminosity distance of type Ia supernovae, which is usually computed through an integral with numerical methods. In this work, we have applied this improvement to the Hu-Sawicki and Starobinsky f (R ) models. We also performed a statistical analysis with data from type Ia supernovae of the Pantheon + compilation and cosmic chronometers. Another original aspect of this work is the different treatment we provide for the absolute magnitude of type Ia supernovae during the inference process, which results in different estimates of the distortion parameter than the ones obtained in the literature. We show that the statistical analyses carried out with our new method require lower computational times than the ones performed with both the numerical and the neural network method from our previous work. This reduction in time is more significant in the case of a difficult computational problem such as the ones addressed in this work.
Palabras clave: cosmology , neural networks , bayesian inference
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.217Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258783
URL: https://link.aps.org/doi/10.1103/PhysRevD.109.123514
DOI: http://dx.doi.org/10.1103/PhysRevD.109.123514
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Articulos(IFIBA)
Articulos de INST.DE FISICA DE BUENOS AIRES
Citación
Chantada, Augusto Tomás; Landau, Susana Judith; Protopapas, Pavlos; Scoccola, Claudia Graciela; Garraffo, Cecilia; Faster Bayesian inference with neural network bundles and new results for f ( R ) models; American Physical Society; Physical Review D; 109; 12; 6-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES