Mostrar el registro sencillo del ítem
dc.contributor.author
Han, Shuning
dc.contributor.author
Sun, Zhe
dc.contributor.author
Duan, Feng
dc.contributor.author
Caiafa, César Federico
dc.contributor.author
Zhang, Yu
dc.contributor.author
Solé Casals, Jordi
dc.date.available
2025-04-09T10:21:28Z
dc.date.issued
2024
dc.identifier.citation
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment; 17th International Joint Conference on Biomedical Engineering Systems and Technologies; Roma; Italia; 2024; 656-666
dc.identifier.isbn
978-989-758-688-0
dc.identifier.issn
2184-4305
dc.identifier.uri
http://hdl.handle.net/11336/258366
dc.description.abstract
Alzheimer’s disease is a progressive form of memory loss that worsens over time. Detecting it early, when memory issues are mild, is crucial for effective interventions. Recent advancements in computer technology, specifically Graph Convolutional Networks (GCNs), have proven to be powerful tools for analyzing Magnetic Resonance Imaging (MRI) data comprehensively. In this study, we developed a GCN framework for diagnosing mild cognitive impairment (MCI) by examining the functional connectivity (FC) derived from resting-state functional MRI (rfMRI) data. Our research systematically explored various types and processing methods of FC, evaluating their performance on the OASIS-3 dataset. The experimental results revealed several key findings. On the one hand, the proposed GCN exhibited significantly superior performance over both the baseline GCN and the Support Vector Machine (SVM) models, with statistically significant differences. It attained the highest average accuracy of 80.3% and a peak accuracy of 88.2%. On the other hand, the GCN framework obtained using individual FCs showed overall slightly better performance than the one using global FCs. However, it is important to note that GCNs using global networks with appropriate connectivity can achieve comparable or even better performance than individual networks in certain cases. Finally, our results also indicate that the connectivity within specific brain regions, such as VIS, DMN, SMN, VAN, and FPC, may play a more significant role in GCN-based MRI classification for MCI diagnosis. These findings significantly contribute to the understanding of neurodegenerative disorders and offer valuable insights into the diverse applications of GCNs in brain analysis and disease detection.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Science and Technology Publications
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Alzheimer disease
dc.subject
Mild Cognitive Impairment
dc.subject
Graph Convolutional Network
dc.subject
fMRI
dc.subject.classification
Ciencias de la Información y Bioinformática
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2025-04-07T15:34:46Z
dc.journal.volume
1
dc.journal.pagination
656-666
dc.journal.pais
Italia
dc.journal.ciudad
Rome
dc.description.fil
Fil: Han, Shuning. University of Vic; España
dc.description.fil
Fil: Sun, Zhe. Juntendo University; China
dc.description.fil
Fil: Duan, Feng. Nankai University; China
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos
dc.description.fil
Fil: Solé Casals, Jordi. University of Vic; España
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5220/0012414600003657
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.scitepress.org/Link.aspx?doi=10.5220/0012414600003657
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://portal.insticc.org/SubmissionDeadlines/63e42b715652b110e22e62a2
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
17th International Joint Conference on Biomedical Engineering Systems and Technologies
dc.date.evento
2024-02-20
dc.description.ciudadEvento
Roma
dc.description.paisEvento
Italia
dc.type.publicacion
Journal
dc.description.institucionOrganizadora
Institute for Systems and Technologies of Information, Control and Communication
dc.source.revista
Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies. BIOSIGNALS
dc.date.eventoHasta
2024-02-22
dc.type
Conferencia
Archivos asociados