Mostrar el registro sencillo del ítem

dc.contributor.author
Han, Shuning  
dc.contributor.author
Sun, Zhe  
dc.contributor.author
Duan, Feng  
dc.contributor.author
Caiafa, César Federico  
dc.contributor.author
Zhang, Yu  
dc.contributor.author
Solé Casals, Jordi  
dc.date.available
2025-04-09T10:21:28Z  
dc.date.issued
2024  
dc.identifier.citation
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment; 17th International Joint Conference on Biomedical Engineering Systems and Technologies; Roma; Italia; 2024; 656-666  
dc.identifier.isbn
978-989-758-688-0  
dc.identifier.issn
2184-4305  
dc.identifier.uri
http://hdl.handle.net/11336/258366  
dc.description.abstract
Alzheimer’s disease is a progressive form of memory loss that worsens over time. Detecting it early, when memory issues are mild, is crucial for effective interventions. Recent advancements in computer technology, specifically Graph Convolutional Networks (GCNs), have proven to be powerful tools for analyzing Magnetic Resonance Imaging (MRI) data comprehensively. In this study, we developed a GCN framework for diagnosing mild cognitive impairment (MCI) by examining the functional connectivity (FC) derived from resting-state functional MRI (rfMRI) data. Our research systematically explored various types and processing methods of FC, evaluating their performance on the OASIS-3 dataset. The experimental results revealed several key findings. On the one hand, the proposed GCN exhibited significantly superior performance over both the baseline GCN and the Support Vector Machine (SVM) models, with statistically significant differences. It attained the highest average accuracy of 80.3% and a peak accuracy of 88.2%. On the other hand, the GCN framework obtained using individual FCs showed overall slightly better performance than the one using global FCs. However, it is important to note that GCNs using global networks with appropriate connectivity can achieve comparable or even better performance than individual networks in certain cases. Finally, our results also indicate that the connectivity within specific brain regions, such as VIS, DMN, SMN, VAN, and FPC, may play a more significant role in GCN-based MRI classification for MCI diagnosis. These findings significantly contribute to the understanding of neurodegenerative disorders and offer valuable insights into the diverse applications of GCNs in brain analysis and disease detection.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Science and Technology Publications  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Alzheimer disease  
dc.subject
Mild Cognitive Impairment  
dc.subject
Graph Convolutional Network  
dc.subject
fMRI  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2025-04-07T15:34:46Z  
dc.journal.volume
1  
dc.journal.pagination
656-666  
dc.journal.pais
Italia  
dc.journal.ciudad
Rome  
dc.description.fil
Fil: Han, Shuning. University of Vic; España  
dc.description.fil
Fil: Sun, Zhe. Juntendo University; China  
dc.description.fil
Fil: Duan, Feng. Nankai University; China  
dc.description.fil
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina  
dc.description.fil
Fil: Zhang, Yu. Lehigh University; Estados Unidos  
dc.description.fil
Fil: Solé Casals, Jordi. University of Vic; España  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.5220/0012414600003657  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.scitepress.org/Link.aspx?doi=10.5220/0012414600003657  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://portal.insticc.org/SubmissionDeadlines/63e42b715652b110e22e62a2  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
17th International Joint Conference on Biomedical Engineering Systems and Technologies  
dc.date.evento
2024-02-20  
dc.description.ciudadEvento
Roma  
dc.description.paisEvento
Italia  
dc.type.publicacion
Journal  
dc.description.institucionOrganizadora
Institute for Systems and Technologies of Information, Control and Communication  
dc.source.revista
Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies. BIOSIGNALS  
dc.date.eventoHasta
2024-02-22  
dc.type
Conferencia