Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment

Han, Shuning; Sun, Zhe; Duan, Feng; Caiafa, César FedericoIcon ; Zhang, Yu; Solé Casals, Jordi
Tipo del evento: Conferencia
Nombre del evento: 17th International Joint Conference on Biomedical Engineering Systems and Technologies
Fecha del evento: 20/02/2024
Institución Organizadora: Institute for Systems and Technologies of Information, Control and Communication;
Título de la revista: Proceedings of the 17th International Joint Conference on Biomedical Engineering Systems and Technologies. BIOSIGNALS
Editorial: Science and Technology Publications
ISSN: 2184-4305
ISBN: 978-989-758-688-0
Idioma: Inglés
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Alzheimer’s disease is a progressive form of memory loss that worsens over time. Detecting it early, when memory issues are mild, is crucial for effective interventions. Recent advancements in computer technology, specifically Graph Convolutional Networks (GCNs), have proven to be powerful tools for analyzing Magnetic Resonance Imaging (MRI) data comprehensively. In this study, we developed a GCN framework for diagnosing mild cognitive impairment (MCI) by examining the functional connectivity (FC) derived from resting-state functional MRI (rfMRI) data. Our research systematically explored various types and processing methods of FC, evaluating their performance on the OASIS-3 dataset. The experimental results revealed several key findings. On the one hand, the proposed GCN exhibited significantly superior performance over both the baseline GCN and the Support Vector Machine (SVM) models, with statistically significant differences. It attained the highest average accuracy of 80.3% and a peak accuracy of 88.2%. On the other hand, the GCN framework obtained using individual FCs showed overall slightly better performance than the one using global FCs. However, it is important to note that GCNs using global networks with appropriate connectivity can achieve comparable or even better performance than individual networks in certain cases. Finally, our results also indicate that the connectivity within specific brain regions, such as VIS, DMN, SMN, VAN, and FPC, may play a more significant role in GCN-based MRI classification for MCI diagnosis. These findings significantly contribute to the understanding of neurodegenerative disorders and offer valuable insights into the diverse applications of GCNs in brain analysis and disease detection.
Palabras clave: Alzheimer disease , Mild Cognitive Impairment , Graph Convolutional Network , fMRI
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.409Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258366
DOI: https://doi.org/10.5220/0012414600003657
URL: https://www.scitepress.org/Link.aspx?doi=10.5220/0012414600003657
URL: https://portal.insticc.org/SubmissionDeadlines/63e42b715652b110e22e62a2
Colecciones
Eventos(IAR)
Eventos de INST.ARG.DE RADIOASTRONOMIA (I)
Citación
An Insight Into Neurodegeneration: Harnessing Functional MRI Connectivity in the Diagnosis of Mild Cognitive Impairment; 17th International Joint Conference on Biomedical Engineering Systems and Technologies; Roma; Italia; 2024; 656-666
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES