Mostrar el registro sencillo del ítem

dc.contributor.author
Peterson, Victoria  
dc.contributor.author
Vissani, Matteo  
dc.contributor.author
Luo, Shiyu  
dc.contributor.author
Rabbani, Qinwan  
dc.contributor.author
Crone, Nathan E.  
dc.contributor.author
Bush, Alan  
dc.contributor.author
Richardson, R. Mark  
dc.date.available
2025-04-08T15:48:28Z  
dc.date.issued
2024-10  
dc.identifier.citation
Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-22  
dc.identifier.uri
http://hdl.handle.net/11336/258329  
dc.description.abstract
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Massachusetts Institute of Technology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
SPEECH PRODUCTION  
dc.subject
SPEECH ARTIFACT  
dc.subject
iEEG  
dc.subject
SPATIAL FILTERING  
dc.subject
PHASE-COUPLING OPTIMIZATION  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
Otras Ciencias Naturales y Exactas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-07T10:32:03Z  
dc.identifier.eissn
2837-6056  
dc.journal.volume
2  
dc.journal.pagination
1-22  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Vissani, Matteo. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Luo, Shiyu. Johns Hopkins University School of Medicine; Estados Unidos  
dc.description.fil
Fil: Rabbani, Qinwan. University Johns Hopkins; Estados Unidos  
dc.description.fil
Fil: Crone, Nathan E.. Johns Hopkins University School of Medicine; Estados Unidos  
dc.description.fil
Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados Unidos  
dc.description.fil
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos  
dc.journal.title
Imaging Neuroscience  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00301/124344/A-supervised-data-driven-spatial-filter-denoising  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/imag_a_00301