Mostrar el registro sencillo del ítem
dc.contributor.author
Peterson, Victoria

dc.contributor.author
Vissani, Matteo
dc.contributor.author
Luo, Shiyu
dc.contributor.author
Rabbani, Qinwan
dc.contributor.author
Crone, Nathan E.
dc.contributor.author
Bush, Alan

dc.contributor.author
Richardson, R. Mark
dc.date.available
2025-04-08T15:48:28Z
dc.date.issued
2024-10
dc.identifier.citation
Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-22
dc.identifier.uri
http://hdl.handle.net/11336/258329
dc.description.abstract
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Massachusetts Institute of Technology
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
SPEECH PRODUCTION
dc.subject
SPEECH ARTIFACT
dc.subject
iEEG
dc.subject
SPATIAL FILTERING
dc.subject
PHASE-COUPLING OPTIMIZATION
dc.subject.classification
Otras Ciencias de la Computación e Información

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.subject.classification
Otras Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Otras Ciencias Naturales y Exactas

dc.subject.classification
Otras Ciencias Naturales y Exactas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-07T10:32:03Z
dc.identifier.eissn
2837-6056
dc.journal.volume
2
dc.journal.pagination
1-22
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Cambridge
dc.description.fil
Fil: Peterson, Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Vissani, Matteo. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Luo, Shiyu. Johns Hopkins University School of Medicine; Estados Unidos
dc.description.fil
Fil: Rabbani, Qinwan. University Johns Hopkins; Estados Unidos
dc.description.fil
Fil: Crone, Nathan E.. Johns Hopkins University School of Medicine; Estados Unidos
dc.description.fil
Fil: Bush, Alan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Harvard Medical School; Estados Unidos
dc.description.fil
Fil: Richardson, R. Mark. Harvard Medical School; Estados Unidos. Massachusetts Institute of Technology; Estados Unidos
dc.journal.title
Imaging Neuroscience
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://direct.mit.edu/imag/article/doi/10.1162/imag_a_00301/124344/A-supervised-data-driven-spatial-filter-denoising
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1162/imag_a_00301
Archivos asociados