Artículo
A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings
Peterson, Victoria
; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; Bush, Alan
; Richardson, R. Mark


Fecha de publicación:
10/2024
Editorial:
Massachusetts Institute of Technology
Revista:
Imaging Neuroscience
e-ISSN:
2837-6056
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Neurosurgical procedures that enable direct brain recordings in awake patients offer unique opportunities to explore the neurophysiology of human speech. The scarcity of these opportunities and the altruism of participating patients compel us to apply the highest rigor to signal analysis. Intracranial electroencephalography (iEEG) signals recorded during overt speech can contain a speech artifact that tracks the fundamental frequency (F0) of the participant’s voice, involving the same high-gamma frequencies that are modulated during speech production and perception. To address this artifact, we developed a spatial-filtering approach to identify and remove acoustic-induced contaminations of the recorded signal. We found that traditional reference schemes jeopardized signal quality, whereas our data-driven method denoised the recordings while preserving underlying neural activity.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Peterson, Victoria; Vissani, Matteo; Luo, Shiyu; Rabbani, Qinwan; Crone, Nathan E.; et al.; A supervised data-driven spatial filter denoising method for speech artifacts in intracranial electrophysiological recordings; Massachusetts Institute of Technology; Imaging Neuroscience; 2; 10-2024; 1-22
Compartir
Altmétricas