Mostrar el registro sencillo del ítem

dc.contributor.author
Martínez Rau, Luciano Sebastián  
dc.contributor.author
Chelotti, Jose Omar  
dc.contributor.author
Giovanini, Leonardo Luis  
dc.contributor.author
Adin, Veysi  
dc.contributor.author
Oelmann, Bengt  
dc.contributor.author
Bader, Sebastian  
dc.date.available
2025-04-08T13:32:58Z  
dc.date.issued
2024-03  
dc.identifier.citation
Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; Giovanini, Leonardo Luis; Adin, Veysi; Oelmann, Bengt; et al.; On-Device Feeding Behavior Analysis of Grazing Cattle; Institute of Electrical and Electronics Engineers; Ieee Transactions on Instrumentation and Measurement; 73; 3-2024; 1-13  
dc.identifier.issn
0018-9456  
dc.identifier.uri
http://hdl.handle.net/11336/258309  
dc.description.abstract
Precision livestock farming (PLF) leverages cutting-edge technologies and data-driven solutions to enhance the efficiency of livestock production, its associated management, and its welfare. Continuous monitoring of the masticatory sound of cattle allows the estimation of dry-matter intake, classification of jaw movements (JMs), and recognition of grazing and rumination bouts. Over the past two decades, algorithms for analyzing feeding sounds have seen improvements in performance and computational requirements. Nevertheless, in some cases, these algorithms have been implemented on resource-constrained electronic devices, limiting their functionality to one specific task: either classifying JMs or recognizing feeding activities (such as grazing and rumination). In this work, we present an acoustic monitoring system that comprehensively analyzes grazing cattle’s feeding behavior at multiple scales. This embedded system classifies different types of JMs, identifies feeding activities, and provides predictor variables for estimating dry-matter intake. Results are transmitted remotely to a base station using long-range communication (LoRa). Two variants of the system have been deployed on a Raspberry Pi Pico board, based on a low-power ARM Cortex-M0+ microcontroller. Both firmware versions make use of direct access memory, sleep mode, and clock-gating techniques to minimize energy consumption. In laboratory experiments, the first deployment consumes 20.1 mW and achieves an F1-score of 87.3% for the classification of JMs and 87.0% for feeding activities. The second deployment consumes 19.1 mW and reaches an F1-score of 84.1% for JMs and 83.5% for feeding activities. The modular design of the proposed embedded monitoring system facilitates integration with energy-harvesting power sources for autonomous operation in field conditions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EDGE COMPUTING  
dc.subject
EMBEDDED MACHINE LEARNING  
dc.subject
FEEDING BEHAVIOR  
dc.subject
MICROCONTROLLER  
dc.subject
ON-DEVICE PROCESSING  
dc.subject
PRECISION LIVESTOCK FARMING  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
Producción Animal y Lechería  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
On-Device Feeding Behavior Analysis of Grazing Cattle  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-07T10:37:37Z  
dc.journal.volume
73  
dc.journal.pagination
1-13  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Martínez Rau, Luciano Sebastián. Mid Sweden University.; Suecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Adin, Veysi. Mid Sweden University.; Suecia  
dc.description.fil
Fil: Oelmann, Bengt. Mid Sweden University.; Suecia  
dc.description.fil
Fil: Bader, Sebastian. Mid Sweden University.; Suecia  
dc.journal.title
Ieee Transactions on Instrumentation and Measurement  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/10471388  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TIM.2024.3376013