Mostrar el registro sencillo del ítem
dc.contributor.author
Martínez Rau, Luciano Sebastián

dc.contributor.author
Chelotti, Jose Omar

dc.contributor.author
Giovanini, Leonardo Luis

dc.contributor.author
Adin, Veysi
dc.contributor.author
Oelmann, Bengt
dc.contributor.author
Bader, Sebastian
dc.date.available
2025-04-08T13:32:58Z
dc.date.issued
2024-03
dc.identifier.citation
Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; Giovanini, Leonardo Luis; Adin, Veysi; Oelmann, Bengt; et al.; On-Device Feeding Behavior Analysis of Grazing Cattle; Institute of Electrical and Electronics Engineers; Ieee Transactions on Instrumentation and Measurement; 73; 3-2024; 1-13
dc.identifier.issn
0018-9456
dc.identifier.uri
http://hdl.handle.net/11336/258309
dc.description.abstract
Precision livestock farming (PLF) leverages cutting-edge technologies and data-driven solutions to enhance the efficiency of livestock production, its associated management, and its welfare. Continuous monitoring of the masticatory sound of cattle allows the estimation of dry-matter intake, classification of jaw movements (JMs), and recognition of grazing and rumination bouts. Over the past two decades, algorithms for analyzing feeding sounds have seen improvements in performance and computational requirements. Nevertheless, in some cases, these algorithms have been implemented on resource-constrained electronic devices, limiting their functionality to one specific task: either classifying JMs or recognizing feeding activities (such as grazing and rumination). In this work, we present an acoustic monitoring system that comprehensively analyzes grazing cattle’s feeding behavior at multiple scales. This embedded system classifies different types of JMs, identifies feeding activities, and provides predictor variables for estimating dry-matter intake. Results are transmitted remotely to a base station using long-range communication (LoRa). Two variants of the system have been deployed on a Raspberry Pi Pico board, based on a low-power ARM Cortex-M0+ microcontroller. Both firmware versions make use of direct access memory, sleep mode, and clock-gating techniques to minimize energy consumption. In laboratory experiments, the first deployment consumes 20.1 mW and achieves an F1-score of 87.3% for the classification of JMs and 87.0% for feeding activities. The second deployment consumes 19.1 mW and reaches an F1-score of 84.1% for JMs and 83.5% for feeding activities. The modular design of the proposed embedded monitoring system facilitates integration with energy-harvesting power sources for autonomous operation in field conditions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EDGE COMPUTING
dc.subject
EMBEDDED MACHINE LEARNING
dc.subject
FEEDING BEHAVIOR
dc.subject
MICROCONTROLLER
dc.subject
ON-DEVICE PROCESSING
dc.subject
PRECISION LIVESTOCK FARMING
dc.subject.classification
Ingeniería Eléctrica y Electrónica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.subject.classification
Producción Animal y Lechería

dc.subject.classification
Producción Animal y Lechería

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
On-Device Feeding Behavior Analysis of Grazing Cattle
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-07T10:37:37Z
dc.journal.volume
73
dc.journal.pagination
1-13
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Martínez Rau, Luciano Sebastián. Mid Sweden University.; Suecia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Chelotti, Jose Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Giovanini, Leonardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
dc.description.fil
Fil: Adin, Veysi. Mid Sweden University.; Suecia
dc.description.fil
Fil: Oelmann, Bengt. Mid Sweden University.; Suecia
dc.description.fil
Fil: Bader, Sebastian. Mid Sweden University.; Suecia
dc.journal.title
Ieee Transactions on Instrumentation and Measurement

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/abstract/document/10471388
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TIM.2024.3376013
Archivos asociados