Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On-Device Feeding Behavior Analysis of Grazing Cattle

Martínez Rau, Luciano SebastiánIcon ; Chelotti, Jose OmarIcon ; Giovanini, Leonardo LuisIcon ; Adin, Veysi; Oelmann, Bengt; Bader, Sebastian
Fecha de publicación: 03/2024
Editorial: Institute of Electrical and Electronics Engineers
Revista: Ieee Transactions on Instrumentation and Measurement
ISSN: 0018-9456
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica; Producción Animal y Lechería

Resumen

Precision livestock farming (PLF) leverages cutting-edge technologies and data-driven solutions to enhance the efficiency of livestock production, its associated management, and its welfare. Continuous monitoring of the masticatory sound of cattle allows the estimation of dry-matter intake, classification of jaw movements (JMs), and recognition of grazing and rumination bouts. Over the past two decades, algorithms for analyzing feeding sounds have seen improvements in performance and computational requirements. Nevertheless, in some cases, these algorithms have been implemented on resource-constrained electronic devices, limiting their functionality to one specific task: either classifying JMs or recognizing feeding activities (such as grazing and rumination). In this work, we present an acoustic monitoring system that comprehensively analyzes grazing cattle’s feeding behavior at multiple scales. This embedded system classifies different types of JMs, identifies feeding activities, and provides predictor variables for estimating dry-matter intake. Results are transmitted remotely to a base station using long-range communication (LoRa). Two variants of the system have been deployed on a Raspberry Pi Pico board, based on a low-power ARM Cortex-M0+ microcontroller. Both firmware versions make use of direct access memory, sleep mode, and clock-gating techniques to minimize energy consumption. In laboratory experiments, the first deployment consumes 20.1 mW and achieves an F1-score of 87.3% for the classification of JMs and 87.0% for feeding activities. The second deployment consumes 19.1 mW and reaches an F1-score of 84.1% for JMs and 83.5% for feeding activities. The modular design of the proposed embedded monitoring system facilitates integration with energy-harvesting power sources for autonomous operation in field conditions.
Palabras clave: EDGE COMPUTING , EMBEDDED MACHINE LEARNING , FEEDING BEHAVIOR , MICROCONTROLLER , ON-DEVICE PROCESSING , PRECISION LIVESTOCK FARMING
Ver el registro completo
 
Archivos asociados
Tamaño: 1.032Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258309
URL: https://ieeexplore.ieee.org/abstract/document/10471388
DOI: http://dx.doi.org/10.1109/TIM.2024.3376013
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Martínez Rau, Luciano Sebastián; Chelotti, Jose Omar; Giovanini, Leonardo Luis; Adin, Veysi; Oelmann, Bengt; et al.; On-Device Feeding Behavior Analysis of Grazing Cattle; Institute of Electrical and Electronics Engineers; Ieee Transactions on Instrumentation and Measurement; 73; 3-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES