Mostrar el registro sencillo del ítem
dc.contributor.author
Forzani, Liliana Maria

dc.contributor.author
Rodriguez, Daniela Andrea

dc.contributor.author
Sued, Raquel Mariela

dc.date.available
2025-04-08T12:44:16Z
dc.date.issued
2024-05
dc.identifier.citation
Forzani, Liliana Maria; Rodriguez, Daniela Andrea; Sued, Raquel Mariela; Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation; Springer; Test; 33; 4; 5-2024; 987-1013
dc.identifier.issn
1133-0686
dc.identifier.uri
http://hdl.handle.net/11336/258298
dc.description.abstract
Prediction, in regression and classification, is one of the main aims in modern data science. When the number of predictors is large, a common first step is to reduce the dimension of the data. Sufficient dimension reduction (SDR) is a well-established paradigm of reduction that keeps all the relevant information in the covariates X that is necessary for the prediction of Y. In practice, SDR has been successfully used as an exploratory tool for modeling after estimation of the sufficient reduction. Nevertheless, even if the estimated reduction is a consistent estimator of the population, there is no theory supporting this step when nonparametric regression is used in the imputed estimator. In this paper, we show that the asymptotic distribution of the nonparametric regression estimator remains unchanged whether the true SDR or its estimator is used. This result allows making inferences, for example, computing confidence intervals for the regression function, thereby avoiding the curse of dimensionality.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Non-parametric regression
dc.subject
Imputation
dc.subject
Sufficient dimension reduction
dc.subject.classification
Estadística y Probabilidad

dc.subject.classification
Matemáticas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-28T11:50:11Z
dc.journal.volume
33
dc.journal.number
4
dc.journal.pagination
987-1013
dc.journal.pais
Alemania

dc.journal.ciudad
Berlin
dc.description.fil
Fil: Forzani, Liliana Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
dc.description.fil
Fil: Rodriguez, Daniela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella. Departamento de Matemáticas y Estadística; Argentina
dc.description.fil
Fil: Sued, Raquel Mariela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina
dc.journal.title
Test

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s11749-024-00932-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11749-024-00932-y
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2306.10537
Archivos asociados