Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation

Forzani, Liliana MariaIcon ; Rodriguez, Daniela AndreaIcon ; Sued, Raquel MarielaIcon
Fecha de publicación: 05/2024
Editorial: Springer
Revista: Test
ISSN: 1133-0686
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Estadística y Probabilidad

Resumen

Prediction, in regression and classification, is one of the main aims in modern data science. When the number of predictors is large, a common first step is to reduce the dimension of the data. Sufficient dimension reduction (SDR) is a well-established paradigm of reduction that keeps all the relevant information in the covariates X that is necessary for the prediction of Y. In practice, SDR has been successfully used as an exploratory tool for modeling after estimation of the sufficient reduction. Nevertheless, even if the estimated reduction is a consistent estimator of the population, there is no theory supporting this step when nonparametric regression is used in the imputed estimator. In this paper, we show that the asymptotic distribution of the nonparametric regression estimator remains unchanged whether the true SDR or its estimator is used. This result allows making inferences, for example, computing confidence intervals for the regression function, thereby avoiding the curse of dimensionality.
Palabras clave: Non-parametric regression , Imputation , Sufficient dimension reduction
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.090Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258298
URL: https://link.springer.com/10.1007/s11749-024-00932-y
DOI: http://dx.doi.org/10.1007/s11749-024-00932-y
Colecciones
Articulos (IC)
Articulos de INSTITUTO DE CALCULO
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Citación
Forzani, Liliana Maria; Rodriguez, Daniela Andrea; Sued, Raquel Mariela; Asymptotic results for nonparametric regression estimators after sufficient dimension reduction estimation; Springer; Test; 33; 4; 5-2024; 987-1013
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES