Mostrar el registro sencillo del ítem

dc.contributor.author
Rangel, Rafael  
dc.contributor.author
Gimenez, Juan Marcelo  
dc.contributor.author
Oñate, Eugenio  
dc.contributor.author
Franci, Alessandro  
dc.date.available
2025-04-08T12:38:27Z  
dc.date.issued
2024-02  
dc.identifier.citation
Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro; A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media; Elsevier; Computers And Geotechnics; 168; 2-2024; 1-13  
dc.identifier.issn
0266-352X  
dc.identifier.uri
http://hdl.handle.net/11336/258291  
dc.description.abstract
This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Granular materials  
dc.subject
Thermal behavior  
dc.subject
Hierarchical multiscale  
dc.subject
Continuum–discrete modeling  
dc.subject
Machine-learning  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
Ingeniería Civil  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-07T10:38:05Z  
dc.journal.volume
168  
dc.journal.pagination
1-13  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Rangel, Rafael. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina  
dc.description.fil
Fil: Oñate, Eugenio. Universidad Politécnica de Catalunya; España  
dc.description.fil
Fil: Franci, Alessandro. Universidad Politécnica de Catalunya; España  
dc.journal.title
Computers And Geotechnics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compgeo.2024.106118