Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media

Rangel, Rafael; Gimenez, Juan MarceloIcon ; Oñate, Eugenio; Franci, Alessandro
Fecha de publicación: 02/2024
Editorial: Elsevier
Revista: Computers And Geotechnics
ISSN: 0266-352X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingenierías y Tecnologías; Ingeniería Civil

Resumen

This work presents a data-driven continuum-discrete multiscale methodology to simulate heat transfer through granular materials.The two scales are hierarchically coupled, where the effective thermal conductivity tensor required by the continuous method at the macroscale is obtained from offline microscale analyses.A set of granular media samples is created through the Discrete Element Method (DEM) to relate microstructure properties with thermal conductivity.The protocol for generating these Representative Volume Elements (RVEs) and homogenizing the microscale response is presented and validated by assessing the representativeness of the granular assemblies.The study found that two local properties, the porosity and the fabric of the material, are sufficient to accurately estimate a representative thermal conductivity tensor.The created dimensionless database of microscale results is used for training a surrogate model based on machine learning.In this way, effective thermal conductivity tensors that accurately reflect the local microstructure can be efficiently predicted from the surrogate model by taking the microstructural properties as inputs.The proposed multiscale methodology enables us to solve heat problems in granular media using a continuum approach with accuracy comparable to a pure discrete computational method but at significantly reduced computational cost.
Palabras clave: Granular materials , Thermal behavior , Hierarchical multiscale , Continuum–discrete modeling , Machine-learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 12.66Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258291
DOI: http://dx.doi.org/10.1016/j.compgeo.2024.106118
Colecciones
Articulos(CIMEC)
Articulos de CENTRO DE INVESTIGACION DE METODOS COMPUTACIONALES
Citación
Rangel, Rafael; Gimenez, Juan Marcelo; Oñate, Eugenio; Franci, Alessandro; A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular media; Elsevier; Computers And Geotechnics; 168; 2-2024; 1-13
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES