Mostrar el registro sencillo del ítem

dc.contributor.author
Mosquera, Candelaria  
dc.contributor.author
Ferrer, Luciana  
dc.contributor.author
Milone, Diego Humberto  
dc.contributor.author
Luna, Daniel  
dc.contributor.author
Ferrante, Enzo  
dc.date.available
2025-04-08T12:37:43Z  
dc.date.issued
2024-06  
dc.identifier.citation
Mosquera, Candelaria; Ferrer, Luciana; Milone, Diego Humberto; Luna, Daniel; Ferrante, Enzo; Class imbalance on medical image classification: towards better evaluation practices for discrimination and calibration performance; Springer; European Radiology; 6-2024; 1-9  
dc.identifier.uri
http://hdl.handle.net/11336/258289  
dc.description.abstract
This work aims to assess standard evaluation practices used by the research community for evaluating medical imaging classifiers, with a specific focus on the implications of class imbalance. The analysis is performed on chest X-rays as a case study and encompasses a comprehensive model performance definition, considering both discriminative capabilities and model calibration.We conduct a concise literature review to examine prevailing scientific practices used when evaluating X-ray classifiers. Then, we perform a systematic experiment on two major chest X-ray datasets to showcase a didactic example of the behavior of several performance metrics under different class ratios and highlight how widely adopted metrics can conceal performance in the minority class.Our literature study confirms that: (1) even when dealing with highly imbalanced datasets, the community tends to use metrics that are dominated by the majority class; and (2) it is still uncommon to include calibration studies for chest X-ray classifiers, albeit its importance in the context of healthcare. Moreover, our systematic experiments confirm that current evaluation practices may not reflect model performance in real clinical scenarios and suggest complementary metrics to better reflect the performance of the system in such scenarios.Our analysis underscores the need for enhanced evaluation practices, particularly in the context of class-imbalanced chest X-ray classifiers. We recommend the inclusion of complementary metrics such as the area under the precision-recall curve (AUC-PR), adjusted AUC-PR, and balanced Brier score, to offer a more accurate depiction of system performance in real clinical scenarios, considering metrics that reflect both, discrimination and calibration performance.This study underscores the critical need for refined evaluation metrics in medical imaging classifiers, emphasizing that prevalent metrics may mask poor performance in minority classes, potentially impacting clinical diagnoses and healthcare outcomes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Deep learning  
dc.subject
Computer-assisted diagnosis  
dc.subject
X-rays  
dc.subject
Prevalence  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Class imbalance on medical image classification: towards better evaluation practices for discrimination and calibration performance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-07T10:36:26Z  
dc.identifier.eissn
1432-1084  
dc.journal.pagination
1-9  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Mosquera, Candelaria. Hospital Italiano; Argentina  
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.description.fil
Fil: Luna, Daniel. Hospital Italiano; Argentina  
dc.description.fil
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina  
dc.journal.title
European Radiology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s00330-024-10834-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s00330-024-10834-0