Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Class imbalance on medical image classification: towards better evaluation practices for discrimination and calibration performance

Mosquera, Candelaria; Ferrer, LucianaIcon ; Milone, Diego HumbertoIcon ; Luna, Daniel; Ferrante, EnzoIcon
Fecha de publicación: 06/2024
Editorial: Springer
Revista: European Radiology
e-ISSN: 1432-1084
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

This work aims to assess standard evaluation practices used by the research community for evaluating medical imaging classifiers, with a specific focus on the implications of class imbalance. The analysis is performed on chest X-rays as a case study and encompasses a comprehensive model performance definition, considering both discriminative capabilities and model calibration.We conduct a concise literature review to examine prevailing scientific practices used when evaluating X-ray classifiers. Then, we perform a systematic experiment on two major chest X-ray datasets to showcase a didactic example of the behavior of several performance metrics under different class ratios and highlight how widely adopted metrics can conceal performance in the minority class.Our literature study confirms that: (1) even when dealing with highly imbalanced datasets, the community tends to use metrics that are dominated by the majority class; and (2) it is still uncommon to include calibration studies for chest X-ray classifiers, albeit its importance in the context of healthcare. Moreover, our systematic experiments confirm that current evaluation practices may not reflect model performance in real clinical scenarios and suggest complementary metrics to better reflect the performance of the system in such scenarios.Our analysis underscores the need for enhanced evaluation practices, particularly in the context of class-imbalanced chest X-ray classifiers. We recommend the inclusion of complementary metrics such as the area under the precision-recall curve (AUC-PR), adjusted AUC-PR, and balanced Brier score, to offer a more accurate depiction of system performance in real clinical scenarios, considering metrics that reflect both, discrimination and calibration performance.This study underscores the critical need for refined evaluation metrics in medical imaging classifiers, emphasizing that prevalent metrics may mask poor performance in minority classes, potentially impacting clinical diagnoses and healthcare outcomes.
Palabras clave: Deep learning , Computer-assisted diagnosis , X-rays , Prevalence
Ver el registro completo
 
Archivos asociados
Tamaño: 1.118Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258289
URL: https://link.springer.com/10.1007/s00330-024-10834-0
DOI: http://dx.doi.org/10.1007/s00330-024-10834-0
Colecciones
Articulos(ICC)
Articulos de INSTITUTO DE INVESTIGACION EN CIENCIAS DE LA COMPUTACION
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Mosquera, Candelaria; Ferrer, Luciana; Milone, Diego Humberto; Luna, Daniel; Ferrante, Enzo; Class imbalance on medical image classification: towards better evaluation practices for discrimination and calibration performance; Springer; European Radiology; 6-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES