Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

An efficient, not-only-linear correlation coefficient based on clustering

Pividori, Milton DamiánIcon ; Ritchie, Marylyn D.; Milone, Diego HumbertoIcon ; Greene, Casey S.
Fecha de publicación: 09/2024
Editorial: Cell Press
Revista: Cell Systems
ISSN: 2405-4712
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Información y Bioinformática

Resumen

Identifying meaningful patterns in data is crucial for understanding complex biological processes, particularly in transcriptomics, where genes with correlated expression often share functions or contribute to disease mechanisms. Traditional correlation coefficients, which primarily capture linear relationships, may overlook important nonlinear patterns. We introduce the clustermatch correlation coefficient (CCC), a not-only-linear coefficient that utilizes clustering to efficiently detect both linear and nonlinear associations. CCC outperforms standard methods by revealing biologically meaningful patterns that linear-only coefficients miss and is faster than state-of-the-art coefficients such as the maximal information coefficient. When applied to human gene expression data from genotype-tissue expression (GTEx), CCC identified robust linear relationships and nonlinear patterns, such as sex-specific differences, that are undetectable by standard methods. Highly ranked gene pairs were enriched for interactions in integrated networks built from protein-protein interactions, transcription factor regulation, and chemical and genetic perturbations, suggesting that CCC can detect functional relationships missed by linear-only approaches. CCC is a highly efficient, next-generation, not-only-linear correlation coefficient for genome-scale data. A record of this paper’s transparent peer review process is included in the supplemental information.
Palabras clave: correlation coefficient , nonlinear relationships , clustering , gene expression
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.204Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/258282
URL: https://linkinghub.elsevier.com/retrieve/pii/S2405471224002357
DOI: http://dx.doi.org/10.1016/j.cels.2024.08.005
Colecciones
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Pividori, Milton Damián; Ritchie, Marylyn D.; Milone, Diego Humberto; Greene, Casey S.; An efficient, not-only-linear correlation coefficient based on clustering; Cell Press; Cell Systems; 15; 9; 9-2024; 854-868.e3
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES