Mostrar el registro sencillo del ítem

dc.contributor.author
Roccia, Bruno Antonio  
dc.contributor.author
Alturria Lanzardo, Carmina José  
dc.contributor.author
Mazzone, Fernando Dario  
dc.contributor.author
Gebhardt, Cristian G.  
dc.date.available
2025-04-04T10:18:54Z  
dc.date.issued
2024-03  
dc.identifier.citation
Roccia, Bruno Antonio; Alturria Lanzardo, Carmina José; Mazzone, Fernando Dario; Gebhardt, Cristian G.; On the homogeneous torsion problem for heterogeneous and orthotropic cross-sections: Theoretical and numerical aspects; Elsevier Science; Applied Numerical Mathematics; 201; 3-2024; 579-607  
dc.identifier.issn
0168-9274  
dc.identifier.uri
http://hdl.handle.net/11336/257993  
dc.description.abstract
For many years, torsion of arbitrary cross-sections has been a subject of numerous investigations from theoretical and numerical points of view. As it is well known, the resulting boundary value problem (BVP) governing such phenomenon happens to be a pure Neumann BVP and, therefore, its solutions are determined up to a constant. Among a large plethora of finite element method (FEM) techniques that can be used in this context, most of FEM practitioners resolve this uniqueness issue by fixing the candidate solution to a node of the domain. Although such popular and pinpointing technique is widely spread and works well for practical purposes, it does not have a continuous counterpart and therefore its justification remains a matter of debate. Hence, this self-contained work aims to address the modeling of arbitrary heterogeneous and orthotropic cross-sections as well as the theoretical and numerical aspects of their solutions. In particular, we discuss the existence of weak solutions, well-posedness, regularity of solutions, and convergence of Galerkin’s method for different variational settings (with special focus on a regularized variational approach). Moreover, we establish a connection, at a discrete level, between the convergence of solutions of well-posed variational settings and those solutions coming from the usual practice of fixing a datum at a node. Finally, we discuss some numerical aspects of all the FEM discrete formulations proposed here by performing convergence analysis in L2 and H1 norms. The section of numerical results is closed by presenting a series of study cases ranging from a square cross-section composed of two different materials to an isotropic bridge crosssection for which no analytical solution exists.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Saint-Venant torsion  
dc.subject
Pure Neumann problem  
dc.subject
FEM  
dc.subject
Regularized formulation  
dc.subject.classification
Mecánica Aplicada  
dc.subject.classification
Ingeniería Mecánica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
On the homogeneous torsion problem for heterogeneous and orthotropic cross-sections: Theoretical and numerical aspects  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-03T13:25:26Z  
dc.journal.volume
201  
dc.journal.pagination
579-607  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Roccia, Bruno Antonio. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega  
dc.description.fil
Fil: Alturria Lanzardo, Carmina José. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Mazzone, Fernando Dario. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Físico-Químicas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina  
dc.description.fil
Fil: Gebhardt, Cristian G.. University Of Bergen. Faculty Of Mathematics And Natural Sciencies; Noruega  
dc.journal.title
Applied Numerical Mathematics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.apnum.2024.03.017