Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

On the homogeneous torsion problem for heterogeneous and orthotropic cross-sections: Theoretical and numerical aspects

Roccia, Bruno AntonioIcon ; Alturria Lanzardo, Carmina JoséIcon ; Mazzone, Fernando DarioIcon ; Gebhardt, Cristian G.
Fecha de publicación: 03/2024
Editorial: Elsevier Science
Revista: Applied Numerical Mathematics
ISSN: 0168-9274
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Mecánica Aplicada

Resumen

For many years, torsion of arbitrary cross-sections has been a subject of numerous investigations from theoretical and numerical points of view. As it is well known, the resulting boundary value problem (BVP) governing such phenomenon happens to be a pure Neumann BVP and, therefore, its solutions are determined up to a constant. Among a large plethora of finite element method (FEM) techniques that can be used in this context, most of FEM practitioners resolve this uniqueness issue by fixing the candidate solution to a node of the domain. Although such popular and pinpointing technique is widely spread and works well for practical purposes, it does not have a continuous counterpart and therefore its justification remains a matter of debate. Hence, this self-contained work aims to address the modeling of arbitrary heterogeneous and orthotropic cross-sections as well as the theoretical and numerical aspects of their solutions. In particular, we discuss the existence of weak solutions, well-posedness, regularity of solutions, and convergence of Galerkin’s method for different variational settings (with special focus on a regularized variational approach). Moreover, we establish a connection, at a discrete level, between the convergence of solutions of well-posed variational settings and those solutions coming from the usual practice of fixing a datum at a node. Finally, we discuss some numerical aspects of all the FEM discrete formulations proposed here by performing convergence analysis in L2 and H1 norms. The section of numerical results is closed by presenting a series of study cases ranging from a square cross-section composed of two different materials to an isotropic bridge crosssection for which no analytical solution exists.
Palabras clave: Saint-Venant torsion , Pure Neumann problem , FEM , Regularized formulation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.355Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257993
DOI: http://dx.doi.org/10.1016/j.apnum.2024.03.017
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos(IDIT)
Articulos de INSTITUTO DE ESTUDIOS AVANZADOS EN INGENIERIA Y TECNOLOGIA
Citación
Roccia, Bruno Antonio; Alturria Lanzardo, Carmina José; Mazzone, Fernando Dario; Gebhardt, Cristian G.; On the homogeneous torsion problem for heterogeneous and orthotropic cross-sections: Theoretical and numerical aspects; Elsevier Science; Applied Numerical Mathematics; 201; 3-2024; 579-607
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES