Mostrar el registro sencillo del ítem

dc.contributor.author
Conde, Cristian Marcelo  
dc.contributor.author
Feki, K.  
dc.date.available
2025-04-03T12:18:38Z  
dc.date.issued
2024-06  
dc.identifier.citation
Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245  
dc.identifier.issn
0236-5294  
dc.identifier.uri
http://hdl.handle.net/11336/257932  
dc.description.abstract
This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
approximate orthogonality  
dc.subject
Birkhoff–James orthogonality  
dc.subject
positive operator  
dc.subject
semi-inner product  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On approximate A-seminorm and A-numerical radius orthogonality of operators  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-31T13:57:27Z  
dc.journal.volume
173  
dc.journal.number
1  
dc.journal.pagination
227-245  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Conde, Cristian Marcelo. Area de Matematica (area de Matematica) ; Instituto de Ciencias ; Universidad Nacional de General Sarmiento; . Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Feki, K.. Najran University; Arabia Saudita  
dc.journal.title
Acta Mathematica Hungarica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s10474-024-01439-6  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10474-024-01439-6