Artículo
On approximate A-seminorm and A-numerical radius orthogonality of operators
Fecha de publicación:
06/2024
Editorial:
Springer
Revista:
Acta Mathematica Hungarica
ISSN:
0236-5294
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper explores the concept of approximate Birkhoff–Jamesorthogonality in the context of operators on semi-Hilbert spaces. These spacesare generated by positive semi-definite sesquilinear forms. We delve into the fundamentalproperties of this concept and provide several characterizations of it.Using innovative arguments, we extend a widely known result initially proposedby Magajna [17]. Additionally, we improve a recent result by Sen and Paul [24] regardinga characterization of approximate numerical radius orthogonality of twosemi-Hilbert space operators, such that one of them is A-positive. Here, A isassumed to be a positive semi-definite operator.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Conde, Cristian Marcelo; Feki, K.; On approximate A-seminorm and A-numerical radius orthogonality of operators; Springer; Acta Mathematica Hungarica; 173; 1; 6-2024; 227-245
Compartir
Altmétricas