Mostrar el registro sencillo del ítem

dc.contributor.author
Gomez Albarracin, Flavia Alejandra  
dc.date.available
2025-03-27T12:53:14Z  
dc.date.issued
2024-12  
dc.identifier.citation
Gomez Albarracin, Flavia Alejandra; Unsupervised machine learning for the detection of exotic phases in skyrmion phase diagrams; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 110; 21; 12-2024; 1-20  
dc.identifier.issn
1098-0121  
dc.identifier.uri
http://hdl.handle.net/11336/257424  
dc.description.abstract
Undoubtedly, machine learning (ML) techniques are being increasingly applied to a wide range of situations in the field of condensed matter. Amongst these techniques, unsupervised techniques are especially atractive, since they imply the possibility of extracting information from the data without previous labeling. In this work, we resort to the technique known as “anomaly detection” to explore potential exotic phases in skyrmion phase diagrams, using two different algorithms: Principal Component Analysis (PCA) and a Convolutional Autoencoder (CAE). First, we train these algorithms with an artificial dataset of skyrmion lattices constructed from an analytical parametrization, fordifferent magnetizations, skyrmion lattice orientations, and skyrmion radii. We apply the trained algorithms to a set of snapshots obtained from Monte Carlo simulations for three ferromagnetic skyrmion models: two including in-plane Dzyaloshinskii-Moriya interaction (DMI) in the triangular and kagome lattices, and one with an additional out-of-plane DMI in the kagome lattice. Then, we compare the root mean square error (RMSE) and the binary cross entropy (BCE) between the input and output snapshots as a function of the external magnetic field and temperature. We find that the RMSE error and its variance in the CAE case may be useful to not only detect exotic low temperature phases, but also to differentiate between the characteristic low temperature orderingsof a skyrmion phase diagram (helical, skyrmions and ferromagetic order). Moreover, we apply the skyrmion trained CAE to two antiferromagnetic models in the triangular lattice, one that gives rise to antiferromagnetic skyrmions, and the pure exchange antiferromagnetic case, finding that thebehaviour of the RMSE is still an indicator of different ordering. Finally, we explore the portability of the technique with the same CAE applying it to a ferromagnetic skyrmion model in the square lattice.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Physical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SKYRMIONS  
dc.subject
MACHINE LEARNING  
dc.subject
TOPOLOGY  
dc.subject
MAGNETISM  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Unsupervised machine learning for the detection of exotic phases in skyrmion phase diagrams  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-26T19:27:15Z  
dc.journal.volume
110  
dc.journal.number
21  
dc.journal.pagination
1-20  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Gomez Albarracin, Flavia Alejandra. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina  
dc.journal.title
Physical Review B: Condensed Matter and Materials Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1103/PhysRevB.110.214415  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.214415