Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Unsupervised machine learning for the detection of exotic phases in skyrmion phase diagrams

Gomez Albarracin, Flavia AlejandraIcon
Fecha de publicación: 12/2024
Editorial: American Physical Society
Revista: Physical Review B: Condensed Matter and Materials Physics
ISSN: 1098-0121
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

Undoubtedly, machine learning (ML) techniques are being increasingly applied to a wide range of situations in the field of condensed matter. Amongst these techniques, unsupervised techniques are especially atractive, since they imply the possibility of extracting information from the data without previous labeling. In this work, we resort to the technique known as “anomaly detection” to explore potential exotic phases in skyrmion phase diagrams, using two different algorithms: Principal Component Analysis (PCA) and a Convolutional Autoencoder (CAE). First, we train these algorithms with an artificial dataset of skyrmion lattices constructed from an analytical parametrization, fordifferent magnetizations, skyrmion lattice orientations, and skyrmion radii. We apply the trained algorithms to a set of snapshots obtained from Monte Carlo simulations for three ferromagnetic skyrmion models: two including in-plane Dzyaloshinskii-Moriya interaction (DMI) in the triangular and kagome lattices, and one with an additional out-of-plane DMI in the kagome lattice. Then, we compare the root mean square error (RMSE) and the binary cross entropy (BCE) between the input and output snapshots as a function of the external magnetic field and temperature. We find that the RMSE error and its variance in the CAE case may be useful to not only detect exotic low temperature phases, but also to differentiate between the characteristic low temperature orderingsof a skyrmion phase diagram (helical, skyrmions and ferromagetic order). Moreover, we apply the skyrmion trained CAE to two antiferromagnetic models in the triangular lattice, one that gives rise to antiferromagnetic skyrmions, and the pure exchange antiferromagnetic case, finding that thebehaviour of the RMSE is still an indicator of different ordering. Finally, we explore the portability of the technique with the same CAE applying it to a ferromagnetic skyrmion model in the square lattice.
Palabras clave: SKYRMIONS , MACHINE LEARNING , TOPOLOGY , MAGNETISM
Ver el registro completo
 
Archivos asociados
Tamaño: 3.211Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257424
DOI: http://dx.doi.org/10.1103/PhysRevB.110.214415
URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.110.214415
Colecciones
Articulos(IFLYSIB)
Articulos de INST.FISICA DE LIQUIDOS Y SIST.BIOLOGICOS (I)
Citación
Gomez Albarracin, Flavia Alejandra; Unsupervised machine learning for the detection of exotic phases in skyrmion phase diagrams; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 110; 21; 12-2024; 1-20
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES