Mostrar el registro sencillo del ítem

dc.contributor.author
Garcia Pavioni, G. L.  
dc.contributor.author
Lamas, Carlos Alberto  
dc.contributor.author
Arlego, Marcelo José Fabián  
dc.date.available
2025-03-27T11:14:15Z  
dc.date.issued
2024-01  
dc.identifier.citation
Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-10  
dc.identifier.issn
0927-0256  
dc.identifier.uri
http://hdl.handle.net/11336/257344  
dc.description.abstract
In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Minimalist  
dc.subject
Neural  
dc.subject
Network  
dc.subject
Training  
dc.subject
Phase  
dc.subject
Classification  
dc.subject
Diluted  
dc.subject
Ising  
dc.subject
Models  
dc.subject.classification
Física de los Materiales Condensados  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Minimalist neural networks training for phase classification in diluted Ising models  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-26T19:47:37Z  
dc.journal.volume
235  
dc.journal.number
112792  
dc.journal.pagination
1-10  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Garcia Pavioni, G. L.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina  
dc.description.fil
Fil: Lamas, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Arlego, Marcelo José Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.journal.title
Computational Materials Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.commatsci.2024.112792  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0927025624000132