Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Minimalist neural networks training for phase classification in diluted Ising models

Garcia Pavioni, G. L.; Lamas, Carlos AlbertoIcon ; Arlego, Marcelo José FabiánIcon
Fecha de publicación: 01/2024
Editorial: Elsevier
Revista: Computational Materials Science
ISSN: 0927-0256
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics.
Palabras clave: Minimalist , Neural , Network , Training , Phase , Classification , Diluted , Ising , Models
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.451Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/257344
DOI: http://dx.doi.org/10.1016/j.commatsci.2024.112792
URL: https://www.sciencedirect.com/science/article/abs/pii/S0927025624000132
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES