Artículo
Minimalist neural networks training for phase classification in diluted Ising models
Fecha de publicación:
01/2024
Editorial:
Elsevier
Revista:
Computational Materials Science
ISSN:
0927-0256
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, we explore the potential of artificial neural networks, which are trained using an exceptionally simplified catalog of ideal configurations encompassing both order and disorder. We explore the generalization power of these networks to classify phases in complex models that are far from the simplified training context.As a paradigmatic case, we analyze the order–disorder transition of the diluted Ising model on several two-dimensional crystalline lattices, which does not have an exact solution and presents challenges for most of the available analytical and numerical techniques. Quantitative agreement is obtained in the determination of transition temperatures and percolation densities, with comparatively much more expensive methods. These findings highlight the potential of minimalist training in neural networks to describe complex phenomena and have implications beyond condensed matter physics.
Palabras clave:
Minimalist
,
Neural
,
Network
,
Training
,
Phase
,
Classification
,
Diluted
,
Ising
,
Models
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Articulos de INST.DE FISICA LA PLATA
Citación
Garcia Pavioni, G. L.; Lamas, Carlos Alberto; Arlego, Marcelo José Fabián; Minimalist neural networks training for phase classification in diluted Ising models; Elsevier; Computational Materials Science; 235; 112792; 1-2024; 1-10
Compartir
Altmétricas