Mostrar el registro sencillo del ítem

dc.contributor.author
Rojas, Cristian  
dc.contributor.author
Sarmiento, Nicole  
dc.contributor.author
Ayora, Emilia  
dc.contributor.author
Pis Diez, Reinaldo  
dc.date.available
2025-03-27T09:51:47Z  
dc.date.issued
2024-03  
dc.identifier.citation
Rojas, Cristian; Sarmiento, Nicole; Ayora, Emilia; Pis Diez, Reinaldo; Computational prediction of retention times of veterinary antibiotics obtained by liquid chromatography‐mass spectrometry; John Wiley & Sons Ltd; Journal of the Science of Food and Agriculture; 104; 11; 3-2024; 6724-6732  
dc.identifier.issn
0022-5142  
dc.identifier.uri
http://hdl.handle.net/11336/257312  
dc.description.abstract
BACKGROUND: Veterinary antibiotics are chemical compounds used to kill or inhibit the growth of pathogenic bacteria associated with animal diseases. These molecules can be defined by their retention times (tR) in liquid chromatography–mass spectrometry (LC–MS). One strategy to predict the tR of new veterinary antibiotics is the development of predictive quantitative structure–property relationships (QSPRs), which were used in this study. RESULTS: A database of 122 antibiotics was selected in which the tR was measured using a Hypersil GOLD column. An optimal three-feature model was developed by integrating the unsupervised variable reduction, replacement method variable subset selection, and multiple linear regression. The negligible differences among the coefficient of determination and the rootmean-square error for the training set (R2 = 0.902 and RMSEC = 0.871) and test set (Q2 = 0.854 and RMSEP = 1.064) indicate a stable and predictive model. In a further step, a more in-depth explanation of the mechanism of action of each descriptor in predicting the tR is provided, with the construction of the theoretical chemical space for accurate predictions of new antibiotics. CONCLUSION: The in silico model developed in this work identified three molecular descriptors associated with aqueous solubility, octanol–water partition coefficient, and the presence of negative and lipophilic atom pairs. The QSPR developed here could be implemented by agricultural and food chemists to identify and monitor existing and new antibiotics within the framework of LC–MS. The computational model was developed in accordance with five principles outlined by the Organization for Economic Co-operation and Development.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons Ltd  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
veterinary antibiotic residues  
dc.subject
animal source foods  
dc.subject
LC–MS  
dc.subject
retention time  
dc.subject
in silico methods  
dc.subject
QSPR  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Computational prediction of retention times of veterinary antibiotics obtained by liquid chromatography‐mass spectrometry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-26T19:46:09Z  
dc.journal.volume
104  
dc.journal.number
11  
dc.journal.pagination
6724-6732  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Rojas, Cristian. Universidad del Azuay.; Ecuador  
dc.description.fil
Fil: Sarmiento, Nicole. Universidad del Azuay.; Ecuador  
dc.description.fil
Fil: Ayora, Emilia. Universidad del Azuay.; Ecuador  
dc.description.fil
Fil: Pis Diez, Reinaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Química Inorgánica "Dr. Pedro J. Aymonino". Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Química Inorgánica "Dr. Pedro J. Aymonino"; Argentina  
dc.journal.title
Journal of the Science of Food and Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/jsfa.13499