Mostrar el registro sencillo del ítem
dc.contributor.author
Guilenea, Federico Nicolás

dc.contributor.author
Casciaro, Mariano Ezequiel

dc.contributor.author
Soulat, Gilles
dc.contributor.author
Mousseaux, E
dc.contributor.author
Craiem, Damian

dc.date.available
2025-03-21T11:30:49Z
dc.date.issued
2024-03
dc.identifier.citation
Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Soulat, Gilles; Mousseaux, E; Craiem, Damian; Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images; IOP Publishing; Biomedical Physics & Engineering Express; 10; 3; 3-2024; 1-9
dc.identifier.issn
2057-1976
dc.identifier.uri
http://hdl.handle.net/11336/256790
dc.description.abstract
Thoracic aorta calcium (TAC) can be assessed from cardiac computed tomography (CT)studies to improve cardiovascular risk prediction. The aim of this study was to develop a fully automatic system to detect TAC and to evaluate its performance for classifying the patients into four TAC risk categories. The method started by segmenting the thoracic aorta, combining three UNets trained with axial, sagittal and coronal CT images. Afterwards, the surrounding lesion candidates were classified using three combined convolutional neural networks(CNNs)trained with orthogonal patches. Image datasets included 1190 non-enhanced ECG-gated cardiac CT studies from a cohort of cardiovascular patients(age 57 ± 9 years, 80% men, 65% TAC > 0). In the test set (N = 119), the combination of UNets was able to successfully segment the thoracic aorta with a mean volume difference of 0.3 ± 11.7 ml(<6%) and a median Dice coefficient of 0.947. The combined CNNs accurately classified the lesion candidates and 87% of the patients(N = 104)were accurately placed in their corresponding risk categories(Kappa = 0.826, ICC = 0.9915). TAC measurement can be estimated automatically from cardiac CT images using UNets to isolate the thoracic aorta and CNNs to classify calcified lesions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CONVOLUTIONAL NEURAL NETWORKS
dc.subject
AORTIC CALCIUM
dc.subject
4D FLOW MRI
dc.subject.classification
Ingeniería Médica

dc.subject.classification
Ingeniería Médica

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-20T11:37:23Z
dc.journal.volume
10
dc.journal.number
3
dc.journal.pagination
1-9
dc.journal.pais
Reino Unido

dc.description.fil
Fil: Guilenea, Federico Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
dc.description.fil
Fil: Casciaro, Mariano Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
dc.description.fil
Fil: Soulat, Gilles. Hopital Europeen Georges Pompidou; Francia
dc.description.fil
Fil: Mousseaux, E. Hopital Europeen Georges Pompidou; Francia
dc.description.fil
Fil: Craiem, Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional, Trasplante y Bioingeniería. Fundación Favaloro. Instituto de Medicina Traslacional, Trasplante y Bioingeniería; Argentina
dc.journal.title
Biomedical Physics & Engineering Express
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/2057-1976/ad2ff2
Archivos asociados