Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images

Guilenea, Federico NicolásIcon ; Casciaro, Mariano EzequielIcon ; Soulat, Gilles; Mousseaux, E; Craiem, DamianIcon
Fecha de publicación: 03/2024
Editorial: IOP Publishing
Revista: Biomedical Physics & Engineering Express
ISSN: 2057-1976
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Médica

Resumen

Thoracic aorta calcium (TAC) can be assessed from cardiac computed tomography (CT)studies to improve cardiovascular risk prediction. The aim of this study was to develop a fully automatic system to detect TAC and to evaluate its performance for classifying the patients into four TAC risk categories. The method started by segmenting the thoracic aorta, combining three UNets trained with axial, sagittal and coronal CT images. Afterwards, the surrounding lesion candidates were classified using three combined convolutional neural networks(CNNs)trained with orthogonal patches. Image datasets included 1190 non-enhanced ECG-gated cardiac CT studies from a cohort of cardiovascular patients(age 57 ± 9 years, 80% men, 65% TAC > 0). In the test set (N = 119), the combination of UNets was able to successfully segment the thoracic aorta with a mean volume difference of 0.3 ± 11.7 ml(<6%) and a median Dice coefficient of 0.947. The combined CNNs accurately classified the lesion candidates and 87% of the patients(N = 104)were accurately placed in their corresponding risk categories(Kappa = 0.826, ICC = 0.9915). TAC measurement can be estimated automatically from cardiac CT images using UNets to isolate the thoracic aorta and CNNs to classify calcified lesions.
Palabras clave: CONVOLUTIONAL NEURAL NETWORKS , AORTIC CALCIUM , 4D FLOW MRI
Ver el registro completo
 
Archivos asociados
Tamaño: 740.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256790
DOI: http://dx.doi.org/10.1088/2057-1976/ad2ff2
Colecciones
Articulos (IMETTYB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL, TRASPLANTE Y BIOINGENIERIA
Citación
Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Soulat, Gilles; Mousseaux, E; Craiem, Damian; Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images; IOP Publishing; Biomedical Physics & Engineering Express; 10; 3; 3-2024; 1-9
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES