Artículo
Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images
Guilenea, Federico Nicolás
; Casciaro, Mariano Ezequiel
; Soulat, Gilles; Mousseaux, E; Craiem, Damian



Fecha de publicación:
03/2024
Editorial:
IOP Publishing
Revista:
Biomedical Physics & Engineering Express
ISSN:
2057-1976
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Thoracic aorta calcium (TAC) can be assessed from cardiac computed tomography (CT)studies to improve cardiovascular risk prediction. The aim of this study was to develop a fully automatic system to detect TAC and to evaluate its performance for classifying the patients into four TAC risk categories. The method started by segmenting the thoracic aorta, combining three UNets trained with axial, sagittal and coronal CT images. Afterwards, the surrounding lesion candidates were classified using three combined convolutional neural networks(CNNs)trained with orthogonal patches. Image datasets included 1190 non-enhanced ECG-gated cardiac CT studies from a cohort of cardiovascular patients(age 57 ± 9 years, 80% men, 65% TAC > 0). In the test set (N = 119), the combination of UNets was able to successfully segment the thoracic aorta with a mean volume difference of 0.3 ± 11.7 ml(<6%) and a median Dice coefficient of 0.947. The combined CNNs accurately classified the lesion candidates and 87% of the patients(N = 104)were accurately placed in their corresponding risk categories(Kappa = 0.826, ICC = 0.9915). TAC measurement can be estimated automatically from cardiac CT images using UNets to isolate the thoracic aorta and CNNs to classify calcified lesions.
Palabras clave:
CONVOLUTIONAL NEURAL NETWORKS
,
AORTIC CALCIUM
,
4D FLOW MRI
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IMETTYB)
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL, TRASPLANTE Y BIOINGENIERIA
Articulos de INSTITUTO DE MEDICINA TRASLACIONAL, TRASPLANTE Y BIOINGENIERIA
Citación
Guilenea, Federico Nicolás; Casciaro, Mariano Ezequiel; Soulat, Gilles; Mousseaux, E; Craiem, Damian; Automatic thoracic aorta calcium quantification using deep learning in non-contrast ECG-gated CT images; IOP Publishing; Biomedical Physics & Engineering Express; 10; 3; 3-2024; 1-9
Compartir
Altmétricas