Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Characterizing unstructured data with the nearest neighbor permutation entropy

Voltarelli, Leonardo G. J. M.; Pessa, Arthur A. B.; Zunino, Luciano JoséIcon ; Zola, Rafael S.; Lenzi, Ervin K.; Perc, Matjaž; Ribeiro, Haroldo V.
Fecha de publicación: 05/2024
Editorial: American Institute of Physics
Revista: Chaos
ISSN: 1054-1500
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Físicas

Resumen

Permutation entropy and its associated frameworks are remarkable examples of physics-inspired techniques adept at processing complex and extensive datasets. Despite substantial progress in developing and applying these tools, their use has been predominantly limited to structured datasets such as time series or images. Here, we introduce the k-nearest neighbor permutation entropy, an innovative extension of the permutation entropy tailored for unstructured data, irrespective of their spatial or temporal configuration and dimensionality. Our approach builds upon nearest neighbor graphs to establish neighborhood relations and uses random walks to extract ordinal patterns and their distribution, thereby defining the k-nearest neighbor permutation entropy. This tool not only adeptly identifies variations in patterns of unstructured data but also does so with a precision that significantly surpasses conventional measures such as spatial autocorrelation. Additionally, it provides a natural approach for incorporating amplitude information and time gaps when analyzing time series or images, thus significantly enhancing its noise resilience and predictive capabilities compared to the usual permutation entropy. Our research substantially expands the applicability of ordinal methods to more general data types, opening promising research avenues for extending the permutation entropy toolkit for unstructured data.
Palabras clave: STRUCTURED DATA , TIME SERIES , IMAGES , UNSTRUCTURED DATA , K-NEAREST NEIGHBOR PERMUTATION ENTROPY , MULTIDIMENSIONAL DATA TYPES
Ver el registro completo
 
Archivos asociados
Tamaño: 7.450Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256670
URL: https://pubs.aip.org/aip/cha/article-abstract/34/5/053130/3294517/Characterizing
DOI: http://dx.doi.org/10.1063/5.0209206
Colecciones
Articulos(CIOP)
Articulos de CENTRO DE INVEST.OPTICAS (I)
Citación
Voltarelli, Leonardo G. J. M.; Pessa, Arthur A. B.; Zunino, Luciano José; Zola, Rafael S.; Lenzi, Ervin K.; et al.; Characterizing unstructured data with the nearest neighbor permutation entropy; American Institute of Physics; Chaos; 34; 5; 5-2024; 1-14
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES