Mostrar el registro sencillo del ítem

dc.contributor.author
Voltarelli, Leonardo G. J. M.  
dc.contributor.author
Pessa, Arthur A. B.  
dc.contributor.author
Zunino, Luciano José  
dc.contributor.author
Zola, Rafael S.  
dc.contributor.author
Lenzi, Ervin K.  
dc.contributor.author
Perc, Matjaž  
dc.contributor.author
Ribeiro, Haroldo V.  
dc.date.available
2025-03-20T12:12:37Z  
dc.date.issued
2024-05  
dc.identifier.citation
Voltarelli, Leonardo G. J. M.; Pessa, Arthur A. B.; Zunino, Luciano José; Zola, Rafael S.; Lenzi, Ervin K.; et al.; Characterizing unstructured data with the nearest neighbor permutation entropy; American Institute of Physics; Chaos; 34; 5; 5-2024; 1-14  
dc.identifier.issn
1054-1500  
dc.identifier.uri
http://hdl.handle.net/11336/256670  
dc.description.abstract
Permutation entropy and its associated frameworks are remarkable examples of physics-inspired techniques adept at processing complex and extensive datasets. Despite substantial progress in developing and applying these tools, their use has been predominantly limited to structured datasets such as time series or images. Here, we introduce the k-nearest neighbor permutation entropy, an innovative extension of the permutation entropy tailored for unstructured data, irrespective of their spatial or temporal configuration and dimensionality. Our approach builds upon nearest neighbor graphs to establish neighborhood relations and uses random walks to extract ordinal patterns and their distribution, thereby defining the k-nearest neighbor permutation entropy. This tool not only adeptly identifies variations in patterns of unstructured data but also does so with a precision that significantly surpasses conventional measures such as spatial autocorrelation. Additionally, it provides a natural approach for incorporating amplitude information and time gaps when analyzing time series or images, thus significantly enhancing its noise resilience and predictive capabilities compared to the usual permutation entropy. Our research substantially expands the applicability of ordinal methods to more general data types, opening promising research avenues for extending the permutation entropy toolkit for unstructured data.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
STRUCTURED DATA  
dc.subject
TIME SERIES  
dc.subject
IMAGES  
dc.subject
UNSTRUCTURED DATA  
dc.subject
K-NEAREST NEIGHBOR PERMUTATION ENTROPY  
dc.subject
MULTIDIMENSIONAL DATA TYPES  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Characterizing unstructured data with the nearest neighbor permutation entropy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-19T13:38:48Z  
dc.journal.volume
34  
dc.journal.number
5  
dc.journal.pagination
1-14  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Voltarelli, Leonardo G. J. M.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil  
dc.description.fil
Fil: Pessa, Arthur A. B.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil  
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina  
dc.description.fil
Fil: Zola, Rafael S.. Universidade Tecnologia Federal Do Parana.; Brasil  
dc.description.fil
Fil: Lenzi, Ervin K.. Universidade Estadual Do Ponta Grossa.; Brasil  
dc.description.fil
Fil: Perc, Matjaž. University of Maribor; Eslovenia  
dc.description.fil
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil  
dc.journal.title
Chaos  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/34/5/053130/3294517/Characterizing-unstructured-data-with-the-nearest?redirectedFrom=fulltext  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0209206