Mostrar el registro sencillo del ítem
dc.contributor.author
Voltarelli, Leonardo G. J. M.
dc.contributor.author
Pessa, Arthur A. B.
dc.contributor.author
Zunino, Luciano José
dc.contributor.author
Zola, Rafael S.
dc.contributor.author
Lenzi, Ervin K.
dc.contributor.author
Perc, Matjaž
dc.contributor.author
Ribeiro, Haroldo V.
dc.date.available
2025-03-20T12:12:37Z
dc.date.issued
2024-05
dc.identifier.citation
Voltarelli, Leonardo G. J. M.; Pessa, Arthur A. B.; Zunino, Luciano José; Zola, Rafael S.; Lenzi, Ervin K.; et al.; Characterizing unstructured data with the nearest neighbor permutation entropy; American Institute of Physics; Chaos; 34; 5; 5-2024; 1-14
dc.identifier.issn
1054-1500
dc.identifier.uri
http://hdl.handle.net/11336/256670
dc.description.abstract
Permutation entropy and its associated frameworks are remarkable examples of physics-inspired techniques adept at processing complex and extensive datasets. Despite substantial progress in developing and applying these tools, their use has been predominantly limited to structured datasets such as time series or images. Here, we introduce the k-nearest neighbor permutation entropy, an innovative extension of the permutation entropy tailored for unstructured data, irrespective of their spatial or temporal configuration and dimensionality. Our approach builds upon nearest neighbor graphs to establish neighborhood relations and uses random walks to extract ordinal patterns and their distribution, thereby defining the k-nearest neighbor permutation entropy. This tool not only adeptly identifies variations in patterns of unstructured data but also does so with a precision that significantly surpasses conventional measures such as spatial autocorrelation. Additionally, it provides a natural approach for incorporating amplitude information and time gaps when analyzing time series or images, thus significantly enhancing its noise resilience and predictive capabilities compared to the usual permutation entropy. Our research substantially expands the applicability of ordinal methods to more general data types, opening promising research avenues for extending the permutation entropy toolkit for unstructured data.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Institute of Physics
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
STRUCTURED DATA
dc.subject
TIME SERIES
dc.subject
IMAGES
dc.subject
UNSTRUCTURED DATA
dc.subject
K-NEAREST NEIGHBOR PERMUTATION ENTROPY
dc.subject
MULTIDIMENSIONAL DATA TYPES
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Characterizing unstructured data with the nearest neighbor permutation entropy
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-19T13:38:48Z
dc.journal.volume
34
dc.journal.number
5
dc.journal.pagination
1-14
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Voltarelli, Leonardo G. J. M.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil
dc.description.fil
Fil: Pessa, Arthur A. B.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil
dc.description.fil
Fil: Zunino, Luciano José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigaciones Ópticas. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigaciones Ópticas. Universidad Nacional de La Plata. Centro de Investigaciones Ópticas; Argentina. Universidad Nacional de La Plata. Facultad de Ingeniería. Departamento de Ciencias Básicas; Argentina
dc.description.fil
Fil: Zola, Rafael S.. Universidade Tecnologia Federal Do Parana.; Brasil
dc.description.fil
Fil: Lenzi, Ervin K.. Universidade Estadual Do Ponta Grossa.; Brasil
dc.description.fil
Fil: Perc, Matjaž. University of Maribor; Eslovenia
dc.description.fil
Fil: Ribeiro, Haroldo V.. Universidade Estadual de Maringá. Departamento de Engenharia Química.; Brasil
dc.journal.title
Chaos
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/34/5/053130/3294517/Characterizing-unstructured-data-with-the-nearest?redirectedFrom=fulltext
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/5.0209206
Archivos asociados