Mostrar el registro sencillo del ítem

dc.contributor.author
Dickenstein, Alicia Marcela  
dc.contributor.author
Emiris, Ioannis Z.  
dc.contributor.author
Fisikopoulos, Fisikopoulos  
dc.date.available
2025-03-19T10:11:17Z  
dc.date.issued
2013  
dc.identifier.citation
Combinatorics of 4-dimensional resultant polytopes; ISSAC'13 : International Symposium on Symbolic and Algebraic Computation; Boston; Estados Unidos; 2013; 1-8  
dc.identifier.isbn
978-1-4503-2059-7  
dc.identifier.uri
http://hdl.handle.net/11336/256525  
dc.description.abstract
The Newton polytope of the resultant, or resultant polytope, characterizes the resultant polynomial more precisely than total degree. The combinatorics of resultant polytopes are known in the Sylvester case [4] and up to dimension 3 [9]. We extend this work by studying the combinatorial characterization of 4-dimensional resultant polytopes, which show a greater diversity and involve computational and combinatorial challenges. In particular, our experiments, based on software respol for computing resultant polytopes, establish lower bounds on the maximal number of faces. By studying mixed subdivisions, we obtain tight upper bounds on the maximal number of facets and ridges, thus arriving at the following maximal f-vector: (22, 66, 66, 22), i.e. vector of face cardinalities. Certain general features emerge, such as the symmetry of the maximal f-vector, which are intriguing but still under investigation. We establish a result of independent interest, namely that the f-vector is maximized when the input supports are sufficiently generic, namely full dimensional and without parallel edges. Lastly, we offer a classification result of all possible 4-dimensional resultant polytopes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Association for Computing Machinery  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
RESULTANT  
dc.subject
F-VECTOR  
dc.subject
MIXED SUBDIVISION  
dc.subject
SECONDARY POLYTOPE  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Combinatorics of 4-dimensional resultant polytopes  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2025-02-17T13:32:03Z  
dc.journal.pagination
1-8  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Nueva York  
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Emiris, Ioannis Z.. University of Athens; Grecia  
dc.description.fil
Fil: Fisikopoulos, Fisikopoulos. University of Athens; Grecia  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1145/2465506.2465937  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/2465506.2465937  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Congreso  
dc.description.nombreEvento
ISSAC'13 : International Symposium on Symbolic and Algebraic Computation  
dc.date.evento
2013-06-26  
dc.description.ciudadEvento
Boston  
dc.description.paisEvento
Estados Unidos  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Association for Computing Machinery  
dc.source.libro
ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation  
dc.date.eventoHasta
2013-06-29  
dc.type
Congreso