Mostrar el registro sencillo del ítem
dc.contributor.author
Dickenstein, Alicia Marcela
dc.contributor.author
Emiris, Ioannis Z.
dc.contributor.author
Fisikopoulos, Fisikopoulos
dc.date.available
2025-03-19T10:11:17Z
dc.date.issued
2013
dc.identifier.citation
Combinatorics of 4-dimensional resultant polytopes; ISSAC'13 : International Symposium on Symbolic and Algebraic Computation; Boston; Estados Unidos; 2013; 1-8
dc.identifier.isbn
978-1-4503-2059-7
dc.identifier.uri
http://hdl.handle.net/11336/256525
dc.description.abstract
The Newton polytope of the resultant, or resultant polytope, characterizes the resultant polynomial more precisely than total degree. The combinatorics of resultant polytopes are known in the Sylvester case [4] and up to dimension 3 [9]. We extend this work by studying the combinatorial characterization of 4-dimensional resultant polytopes, which show a greater diversity and involve computational and combinatorial challenges. In particular, our experiments, based on software respol for computing resultant polytopes, establish lower bounds on the maximal number of faces. By studying mixed subdivisions, we obtain tight upper bounds on the maximal number of facets and ridges, thus arriving at the following maximal f-vector: (22, 66, 66, 22), i.e. vector of face cardinalities. Certain general features emerge, such as the symmetry of the maximal f-vector, which are intriguing but still under investigation. We establish a result of independent interest, namely that the f-vector is maximized when the input supports are sufficiently generic, namely full dimensional and without parallel edges. Lastly, we offer a classification result of all possible 4-dimensional resultant polytopes.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Association for Computing Machinery
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
RESULTANT
dc.subject
F-VECTOR
dc.subject
MIXED SUBDIVISION
dc.subject
SECONDARY POLYTOPE
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Combinatorics of 4-dimensional resultant polytopes
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2025-02-17T13:32:03Z
dc.journal.pagination
1-8
dc.journal.pais
Estados Unidos
dc.journal.ciudad
Nueva York
dc.description.fil
Fil: Dickenstein, Alicia Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Emiris, Ioannis Z.. University of Athens; Grecia
dc.description.fil
Fil: Fisikopoulos, Fisikopoulos. University of Athens; Grecia
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://doi.org/10.1145/2465506.2465937
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://dl.acm.org/doi/10.1145/2465506.2465937
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Congreso
dc.description.nombreEvento
ISSAC'13 : International Symposium on Symbolic and Algebraic Computation
dc.date.evento
2013-06-26
dc.description.ciudadEvento
Boston
dc.description.paisEvento
Estados Unidos
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Association for Computing Machinery
dc.source.libro
ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
dc.date.eventoHasta
2013-06-29
dc.type
Congreso
Archivos asociados