Evento
Combinatorics of 4-dimensional resultant polytopes
Tipo del evento:
Congreso
Nombre del evento:
ISSAC'13 : International Symposium on Symbolic and Algebraic Computation
Fecha del evento:
26/06/2013
Institución Organizadora:
Association for Computing Machinery;
Título del Libro:
ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
Editorial:
Association for Computing Machinery
ISBN:
978-1-4503-2059-7
Idioma:
Inglés
Clasificación temática:
Resumen
The Newton polytope of the resultant, or resultant polytope, characterizes the resultant polynomial more precisely than total degree. The combinatorics of resultant polytopes are known in the Sylvester case [4] and up to dimension 3 [9]. We extend this work by studying the combinatorial characterization of 4-dimensional resultant polytopes, which show a greater diversity and involve computational and combinatorial challenges. In particular, our experiments, based on software respol for computing resultant polytopes, establish lower bounds on the maximal number of faces. By studying mixed subdivisions, we obtain tight upper bounds on the maximal number of facets and ridges, thus arriving at the following maximal f-vector: (22, 66, 66, 22), i.e. vector of face cardinalities. Certain general features emerge, such as the symmetry of the maximal f-vector, which are intriguing but still under investigation. We establish a result of independent interest, namely that the f-vector is maximized when the input supports are sufficiently generic, namely full dimensional and without parallel edges. Lastly, we offer a classification result of all possible 4-dimensional resultant polytopes.
Palabras clave:
RESULTANT
,
F-VECTOR
,
MIXED SUBDIVISION
,
SECONDARY POLYTOPE
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IMAS)
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Combinatorics of 4-dimensional resultant polytopes; ISSAC'13 : International Symposium on Symbolic and Algebraic Computation; Boston; Estados Unidos; 2013; 1-8
Compartir