Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Evento

Combinatorics of 4-dimensional resultant polytopes

Dickenstein, Alicia MarcelaIcon ; Emiris, Ioannis Z.; Fisikopoulos, Fisikopoulos
Tipo del evento: Congreso
Nombre del evento: ISSAC'13 : International Symposium on Symbolic and Algebraic Computation
Fecha del evento: 26/06/2013
Institución Organizadora: Association for Computing Machinery;
Título del Libro: ISSAC '13: Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation
Editorial: Association for Computing Machinery
ISBN: 978-1-4503-2059-7
Idioma: Inglés
Clasificación temática:
Matemática Pura

Resumen

The Newton polytope of the resultant, or resultant polytope, characterizes the resultant polynomial more precisely than total degree. The combinatorics of resultant polytopes are known in the Sylvester case [4] and up to dimension 3 [9]. We extend this work by studying the combinatorial characterization of 4-dimensional resultant polytopes, which show a greater diversity and involve computational and combinatorial challenges. In particular, our experiments, based on software respol for computing resultant polytopes, establish lower bounds on the maximal number of faces. By studying mixed subdivisions, we obtain tight upper bounds on the maximal number of facets and ridges, thus arriving at the following maximal f-vector: (22, 66, 66, 22), i.e. vector of face cardinalities. Certain general features emerge, such as the symmetry of the maximal f-vector, which are intriguing but still under investigation. We establish a result of independent interest, namely that the f-vector is maximized when the input supports are sufficiently generic, namely full dimensional and without parallel edges. Lastly, we offer a classification result of all possible 4-dimensional resultant polytopes.
Palabras clave: RESULTANT , F-VECTOR , MIXED SUBDIVISION , SECONDARY POLYTOPE
Ver el registro completo
 
Archivos asociados
Tamaño: 425.3Kb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256525
URL: https://doi.org/10.1145/2465506.2465937
URL: https://dl.acm.org/doi/10.1145/2465506.2465937
Colecciones
Eventos(IMAS)
Eventos de INSTITUTO DE INVESTIGACIONES MATEMATICAS "LUIS A. SANTALO"
Citación
Combinatorics of 4-dimensional resultant polytopes; ISSAC'13 : International Symposium on Symbolic and Algebraic Computation; Boston; Estados Unidos; 2013; 1-8
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES