Mostrar el registro sencillo del ítem

dc.contributor.author
Ruiz, Joaquin Victorio  
dc.contributor.author
Wu, Hau Tieng  
dc.contributor.author
Colominas, Marcelo Alejandro  
dc.date.available
2025-03-17T11:25:46Z  
dc.date.issued
2024-11  
dc.identifier.citation
Ruiz, Joaquin Victorio; Wu, Hau Tieng; Colominas, Marcelo Alejandro; Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 72; 11-2024; 5581-5592  
dc.identifier.issn
1053-587X  
dc.identifier.uri
http://hdl.handle.net/11336/256293  
dc.description.abstract
Dealing with time series with missing values, including those afflicted by low quality or over-saturation, presents a significant signal processing challenge. The task of recovering these missing values, known as imputation, has led to the development of several algorithms. However, we have observed that the efficacy of these algorithms tends to diminish when the time series exhibits non-stationary oscillatory behavior. In this paper, we introduce a novel algorithm, coined Harmonic Level Interpolation (HaLI), which enhances the performance of existing imputation algorithms for oscillatory time series. After running any chosen imputation algorithm, HaLI leverages the harmonic decomposition based on the adaptive non-harmonic model of the initial imputation to improve the imputation accuracy for oscillatory time series. Experimental assessments conducted on synthetic and real signals consistently highlight that HaLI enhances the performance of existing imputation algorithms. The algorithm is made publicly available as a readily employable Matlab code for other researchers to use.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Institute of Electrical and Electronics Engineers  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
IMPUTATION  
dc.subject
MISSING DATA  
dc.subject
ADAPTIVE NONHARMONIC MODEL  
dc.subject
HARMONIC DECOMPOSITION  
dc.subject.classification
Ingeniería Eléctrica y Electrónica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-17T10:26:50Z  
dc.journal.volume
72  
dc.journal.pagination
5581-5592  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Ruiz, Joaquin Victorio. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.description.fil
Fil: Wu, Hau Tieng. University Of New York. Courant Institute Of Mathematical Sciences.; Estados Unidos  
dc.description.fil
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina  
dc.journal.title
IEEE Transactions On Signal Processing  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10771805/  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSP.2024.3508468