Mostrar el registro sencillo del ítem
dc.contributor.author
Ruiz, Joaquin Victorio

dc.contributor.author
Wu, Hau Tieng
dc.contributor.author
Colominas, Marcelo Alejandro

dc.date.available
2025-03-17T11:25:46Z
dc.date.issued
2024-11
dc.identifier.citation
Ruiz, Joaquin Victorio; Wu, Hau Tieng; Colominas, Marcelo Alejandro; Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 72; 11-2024; 5581-5592
dc.identifier.issn
1053-587X
dc.identifier.uri
http://hdl.handle.net/11336/256293
dc.description.abstract
Dealing with time series with missing values, including those afflicted by low quality or over-saturation, presents a significant signal processing challenge. The task of recovering these missing values, known as imputation, has led to the development of several algorithms. However, we have observed that the efficacy of these algorithms tends to diminish when the time series exhibits non-stationary oscillatory behavior. In this paper, we introduce a novel algorithm, coined Harmonic Level Interpolation (HaLI), which enhances the performance of existing imputation algorithms for oscillatory time series. After running any chosen imputation algorithm, HaLI leverages the harmonic decomposition based on the adaptive non-harmonic model of the initial imputation to improve the imputation accuracy for oscillatory time series. Experimental assessments conducted on synthetic and real signals consistently highlight that HaLI enhances the performance of existing imputation algorithms. The algorithm is made publicly available as a readily employable Matlab code for other researchers to use.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Institute of Electrical and Electronics Engineers

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
IMPUTATION
dc.subject
MISSING DATA
dc.subject
ADAPTIVE NONHARMONIC MODEL
dc.subject
HARMONIC DECOMPOSITION
dc.subject.classification
Ingeniería Eléctrica y Electrónica

dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-03-17T10:26:50Z
dc.journal.volume
72
dc.journal.pagination
5581-5592
dc.journal.pais
Estados Unidos

dc.journal.ciudad
New York
dc.description.fil
Fil: Ruiz, Joaquin Victorio. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.description.fil
Fil: Wu, Hau Tieng. University Of New York. Courant Institute Of Mathematical Sciences.; Estados Unidos
dc.description.fil
Fil: Colominas, Marcelo Alejandro. Universidad Nacional de Entre Ríos. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática; Argentina
dc.journal.title
IEEE Transactions On Signal Processing

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/10771805/
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1109/TSP.2024.3508468
Archivos asociados