Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition

Ruiz, Joaquin VictorioIcon ; Wu, Hau Tieng; Colominas, Marcelo AlejandroIcon
Fecha de publicación: 11/2024
Editorial: Institute of Electrical and Electronics Engineers
Revista: IEEE Transactions On Signal Processing
ISSN: 1053-587X
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Eléctrica y Electrónica

Resumen

Dealing with time series with missing values, including those afflicted by low quality or over-saturation, presents a significant signal processing challenge. The task of recovering these missing values, known as imputation, has led to the development of several algorithms. However, we have observed that the efficacy of these algorithms tends to diminish when the time series exhibits non-stationary oscillatory behavior. In this paper, we introduce a novel algorithm, coined Harmonic Level Interpolation (HaLI), which enhances the performance of existing imputation algorithms for oscillatory time series. After running any chosen imputation algorithm, HaLI leverages the harmonic decomposition based on the adaptive non-harmonic model of the initial imputation to improve the imputation accuracy for oscillatory time series. Experimental assessments conducted on synthetic and real signals consistently highlight that HaLI enhances the performance of existing imputation algorithms. The algorithm is made publicly available as a readily employable Matlab code for other researchers to use.
Palabras clave: IMPUTATION , MISSING DATA , ADAPTIVE NONHARMONIC MODEL , HARMONIC DECOMPOSITION
Ver el registro completo
 
Archivos asociados
Tamaño: 2.294Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/256293
URL: https://ieeexplore.ieee.org/document/10771805/
DOI: http://dx.doi.org/10.1109/TSP.2024.3508468
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Ruiz, Joaquin Victorio; Wu, Hau Tieng; Colominas, Marcelo Alejandro; Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 72; 11-2024; 5581-5592
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES