Artículo
Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition
Fecha de publicación:
11/2024
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
IEEE Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Dealing with time series with missing values, including those afflicted by low quality or over-saturation, presents a significant signal processing challenge. The task of recovering these missing values, known as imputation, has led to the development of several algorithms. However, we have observed that the efficacy of these algorithms tends to diminish when the time series exhibits non-stationary oscillatory behavior. In this paper, we introduce a novel algorithm, coined Harmonic Level Interpolation (HaLI), which enhances the performance of existing imputation algorithms for oscillatory time series. After running any chosen imputation algorithm, HaLI leverages the harmonic decomposition based on the adaptive non-harmonic model of the initial imputation to improve the imputation accuracy for oscillatory time series. Experimental assessments conducted on synthetic and real signals consistently highlight that HaLI enhances the performance of existing imputation algorithms. The algorithm is made publicly available as a readily employable Matlab code for other researchers to use.
Palabras clave:
IMPUTATION
,
MISSING DATA
,
ADAPTIVE NONHARMONIC MODEL
,
HARMONIC DECOMPOSITION
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (IBB)
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Articulos de INSTITUTO DE INVESTIGACION Y DESARROLLO EN BIOINGENIERIA Y BIOINFORMATICA
Citación
Ruiz, Joaquin Victorio; Wu, Hau Tieng; Colominas, Marcelo Alejandro; Enhancing Missing Data Imputation of Non-stationary Oscillatory Signals with Harmonic Decomposition; Institute of Electrical and Electronics Engineers; IEEE Transactions On Signal Processing; 72; 11-2024; 5581-5592
Compartir
Altmétricas