Mostrar el registro sencillo del ítem

dc.contributor.author
Rodriguez, Ignacio Martin  
dc.contributor.author
Mercau, Jorge Luis  
dc.contributor.author
Cipriotti, Pablo Ariel  
dc.contributor.author
Hall, Antonio Juan  
dc.contributor.author
Monzon, Juan Pablo  
dc.date.available
2025-03-11T12:05:15Z  
dc.date.issued
2023-09  
dc.identifier.citation
Rodriguez, Ignacio Martin; Mercau, Jorge Luis; Cipriotti, Pablo Ariel; Hall, Antonio Juan; Monzon, Juan Pablo; Fine-tuning the CROPGRO-Sunflower model and its application to the quantification of crop responses to environmental and management variables; Elsevier Science; Field Crops Research; 300; 108986; 9-2023; 1-11  
dc.identifier.issn
0378-4290  
dc.identifier.uri
http://hdl.handle.net/11336/255881  
dc.description.abstract
Problem: The Decision Support System for Agrotechnology Transfer (DSSAT) contains a sunflower model based on CROPGRO. This model assumes some parameters values out of the crop species variability. Besides, this model has not been assessed for simulating grain yield and grain oil content in contrasting environments. Objective: The main goal of this study was to generate and test a revised CROPGRO-Sunflower model. In addition, we used the revised CROPGRO-Sunflower to quantify crop responses to environmental and management variables. Methods: Three sunflower models: a revised CROPGRO-Sunflower, the original CROPGRO-Sunflower and the OILCROP-SUN were calibrated and evaluated across contrasting environments. We compared the revised CROPGRO-Sunflower with the original CROPGRO-Sunflower and OILCROP-SUN in terms of ability to simulate crop development, growth, grain yield and grain oil content. Crop responses to soil depth, sowing date, and El Nino-Southern ˜ Oscillation (ENSO) effects were quantified using the revised CROPGRO-Sunflower in combination with climatic records for 37 growing seasons to simulate yield in two contrasting environments of Argentina: Balcarce and Reconquista. Results: Crop growth, grain yield and grain oil content were better simulated by the revised CROPGRO-Sunflower than by OILCROP-SUN. Simulated yield had a root mean square error (RMSE) of 48 g m-2 with revised CROPGRO-Sunflower and of 119 g m-2 with OILCROP-SUN. Moreover, RMSE for simulated grain oil concentration was 2% for revised CROPGRO-Sunflower and 11% for OILCROP-SUN. Deep soils and late sowing dates resulted in higher grain yield at Balcarce. Sowing date did not affect grain yield at Reconquista. An effect of the ENSO phases on sunflower grain yield was found. "La Nina" ˜ phase was associated with the lowest grain yields at both sites. Conclusions: Modifications made to the original CROPGRO-Sunflower improved model performance. The revised CROPGRO-Sunflower model can be utilized to simulate crop phenology, growth, grain yield and grain oil concentration over a wide range of environmental conditions. Implications: This calibrated and evaluated crop simulation model will allow to advance in the quantification of yield gaps and to study the impact of other management practices on sunflower crop production.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
DSSAT  
dc.subject
Girasol  
dc.subject
Modelado cultivos  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Fine-tuning the CROPGRO-Sunflower model and its application to the quantification of crop responses to environmental and management variables  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-03-10T11:55:11Z  
dc.journal.volume
300  
dc.journal.number
108986  
dc.journal.pagination
1-11  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Rodriguez, Ignacio Martin. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina  
dc.description.fil
Fil: Mercau, Jorge Luis. Instituto Nacional de Tecnología Agropecuaria; Argentina  
dc.description.fil
Fil: Cipriotti, Pablo Ariel. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Hall, Antonio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Monzon, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Agrarias; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce; Argentina  
dc.journal.title
Field Crops Research  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.fcr.2023.108986  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S037842902300179X