Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Fine-tuning the CROPGRO-Sunflower model and its application to the quantification of crop responses to environmental and management variables

Rodriguez, Ignacio Martin; Mercau, Jorge Luis; Cipriotti, Pablo ArielIcon ; Hall, Antonio JuanIcon ; Monzon, Juan PabloIcon
Fecha de publicación: 09/2023
Editorial: Elsevier Science
Revista: Field Crops Research
ISSN: 0378-4290
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Agricultura

Resumen

Problem: The Decision Support System for Agrotechnology Transfer (DSSAT) contains a sunflower model based on CROPGRO. This model assumes some parameters values out of the crop species variability. Besides, this model has not been assessed for simulating grain yield and grain oil content in contrasting environments. Objective: The main goal of this study was to generate and test a revised CROPGRO-Sunflower model. In addition, we used the revised CROPGRO-Sunflower to quantify crop responses to environmental and management variables. Methods: Three sunflower models: a revised CROPGRO-Sunflower, the original CROPGRO-Sunflower and the OILCROP-SUN were calibrated and evaluated across contrasting environments. We compared the revised CROPGRO-Sunflower with the original CROPGRO-Sunflower and OILCROP-SUN in terms of ability to simulate crop development, growth, grain yield and grain oil content. Crop responses to soil depth, sowing date, and El Nino-Southern ˜ Oscillation (ENSO) effects were quantified using the revised CROPGRO-Sunflower in combination with climatic records for 37 growing seasons to simulate yield in two contrasting environments of Argentina: Balcarce and Reconquista. Results: Crop growth, grain yield and grain oil content were better simulated by the revised CROPGRO-Sunflower than by OILCROP-SUN. Simulated yield had a root mean square error (RMSE) of 48 g m-2 with revised CROPGRO-Sunflower and of 119 g m-2 with OILCROP-SUN. Moreover, RMSE for simulated grain oil concentration was 2% for revised CROPGRO-Sunflower and 11% for OILCROP-SUN. Deep soils and late sowing dates resulted in higher grain yield at Balcarce. Sowing date did not affect grain yield at Reconquista. An effect of the ENSO phases on sunflower grain yield was found. "La Nina" ˜ phase was associated with the lowest grain yields at both sites. Conclusions: Modifications made to the original CROPGRO-Sunflower improved model performance. The revised CROPGRO-Sunflower model can be utilized to simulate crop phenology, growth, grain yield and grain oil concentration over a wide range of environmental conditions. Implications: This calibrated and evaluated crop simulation model will allow to advance in the quantification of yield gaps and to study the impact of other management practices on sunflower crop production.
Palabras clave: DSSAT , Girasol , Modelado cultivos
Ver el registro completo
 
Archivos asociados
Tamaño: 4.680Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/255881
DOI: http://dx.doi.org/10.1016/j.fcr.2023.108986
URL: https://www.sciencedirect.com/science/article/pii/S037842902300179X
Colecciones
Articulos(IFEVA)
Articulos de INST.D/INV.FISIOLOGICAS Y ECO.VINCULADAS A L/AGRIC
Citación
Rodriguez, Ignacio Martin; Mercau, Jorge Luis; Cipriotti, Pablo Ariel; Hall, Antonio Juan; Monzon, Juan Pablo; Fine-tuning the CROPGRO-Sunflower model and its application to the quantification of crop responses to environmental and management variables; Elsevier Science; Field Crops Research; 300; 108986; 9-2023; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES